又是慈溪那邊給的題目,此次終於沒有像上次那樣尷尬了,html
T1拿到了較高的暴力分,T2沒寫炸,而後T3寫了一個優雅的暴力就203pts,Rank3了。git
據說其它學校的分數廣泛100+,那咱們學校還不是強到飛起。數組
這題目出的真心長,讓我聯想到咱們語文老師說的:ui
之後教育改革可能不僅是語文,其餘學科的考試題目字數都要顯著增長了,到時後數學大題你看都看不完。spa
原來連OI的題目都有這種趨勢。code
咱們精簡題意後發現:給你兩段序列,求兩兩乘積的第\(k\)大值。htm
而後瞄一眼數據範圍,而後我就想到了一種經典的堆的解決方法。blog
先排序,而後把全部的\(a_i\cdot b_1\)的值都扔到大根堆裏,而後每次取出最大的值以後就把\(b_i\)的下標變成\(i+1\)再乘起來扔回去便可。排序
複雜度是\(O(q\cdot k\ log\ k)\)的,確定會炸。ip
這裏給出堆的代碼(至於又開了小根堆是爲了在\(k\)和\((b-a+1)(r-l+1)-k+1\)中取一個較小的)
53ptsCODE
#include<cstdio> #include<cctype> #include<algorithm> #include<queue> using namespace std; const int N=255,M=100005; int n,m,a[N],b[M],c[N],d[M],q,opt,L,R,l,r,k; struct Small { int x,y,s; bool operator <(const Small a) const { return a.s<s; } }; struct Big { int x,y,s; bool operator <(const Big a) const { return a.s>s; } }; priority_queue <Small> small; priority_queue <Big> big; inline char tc(void) { static char fl[100000],*A=fl,*B=fl; return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++; } inline void read(int &x) { x=0; char ch; while (!isdigit(ch=tc())); while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); } inline void write(int x) { if (x>9) write(x/10); putchar(x%10+'0'); } inline void copy(void) { register int i; for (i=l;i<=r;++i) c[i-l+1]=a[i]; for (i=L;i<=R;++i) d[i-L+1]=b[i]; } inline bool small_cmp(int a,int b) { return a<b; } inline bool big_cmp(int a,int b) { return a>b; } inline void Big_solve(int k) { sort(c+1,c+r-l+2,big_cmp); sort(d+1,d+R-L+2,big_cmp); while (!big.empty()) big.pop(); for (register int i=1;i<=r-l+1;++i) big.push((Big){i,1,c[i]*d[1]}); for (;;) { Big now=big.top(); big.pop(); if (!(--k)) { write(now.s); putchar('\n'); return; } if (now.y^(R-L+1)) big.push((Big){now.x,now.y+1,c[now.x]*d[now.y+1]}); } } inline void Small_solve(int k) { sort(c+1,c+r-l+2,small_cmp); sort(d+1,d+R-L+2,small_cmp); while (!small.empty()) small.pop(); for (register int i=1;i<=r-l+1;++i) small.push((Small){i,1,c[i]*d[1]}); for (;;) { Small now=small.top(); small.pop(); if (!(--k)) { write(now.s); putchar('\n'); return; } if (now.y^(R-L+1)) small.push((Small){now.x,now.y+1,c[now.x]*d[now.y+1]}); } } int main() { freopen("equipment.in","r",stdin); freopen("equipment.out","w",stdout); register int i; read(n); read(m); for (i=1;i<=n;++i) read(a[i]); for (i=1;i<=m;++i) read(b[i]); read(q); while (q--) { read(opt); read(l); read(r); read(L); if (opt) { read(R); read(k); int tot=(r-l+1)*(R-L+1); copy(); if (k<tot-k+1) Big_solve(k); else Small_solve(tot-k+1); } else { if (l) b[r]=L; else a[r]=L; } } return 0; }
其實這是一個經典的模板(我怎麼沒據說過),咱們首先二分答案\(x\),而後對於其中一個數組排序。
以後對於另外一個數組中的全部數只須要再次二分統計個數便可。
主要仍是一個套路題。
CODE
#include<cstdio> #include<cctype> #include<algorithm> using namespace std; const int N=255,M=100005; int n,m,a[N],b[M],c[M],q,opt,L,R,l,r,k; inline char tc(void) { static char fl[100000],*A=fl,*B=fl; return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++; } inline void read(int &x) { x=0; char ch; while (!isdigit(ch=tc())); while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); } inline void write(int x) { if (x>9) write(x/10); putchar(x%10+'0'); } inline bool cmp(int a,int b) { return a>b; } inline void copy(void) { register int i; for (i=L;i<=R;++i) c[i-L+1]=b[i]; sort(c+1,c+R-L+2,cmp); } inline int check(int x) { int rk=0; for (register int i=l;i<=r;++i) { int l_=1,r_=R-L+1; while (l_<=r_) { int mid=l_+r_>>1; if (c[mid]*a[i]<x) r_=mid-1; else l_=mid+1; } rk+=r_; } return rk; } inline void solve(void) { int l=1,r=2e9; while (l<=r) { int mid=(r-l>>1)+l; if (check(mid)<k) r=mid-1; else l=mid+1; } write(r); putchar('\n'); } int main() { freopen("equipment.in","r",stdin); freopen("equipment.out","w",stdout); register int i; read(n); read(m); for (i=1;i<=n;++i) read(a[i]); for (i=1;i<=m;++i) read(b[i]); read(q); while (q--) { read(opt); read(l); read(r); read(L); if (opt) read(R),read(k),copy(),solve(); else l?b[r]=L:a[r]=L; } return 0; }
經典水題,聽說是NOI的題目。良心簽到不解釋
對於這種層級分明的關係,考慮拓撲+DP轉移。
咱們令\(f_i\)表示以\(i\)結尾的食物鏈的條數,發現轉移時:
\(f_{son[i]}+=f_i\)
而後寫一個拓撲轉移便可,最後對於出度爲\(0\)的點進行特判便可。
可是注意一點:單節點不構成食物鏈
CODE
#include<cstdio> #include<cctype> #include<cstring> using namespace std; const int N=100005; struct edge { int to,next; }e[N<<1]; int head[N],in[N],out[N],q[N],n,m,x,y,cnt; unsigned long long f[N],ans; inline char tc(void) { static char fl[100000],*A=fl,*B=fl; return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++; } inline void read(int &x) { x=0; char ch; while (!isdigit(ch=tc())); while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); } inline void add(int x,int y) { e[++cnt].to=y; e[cnt].next=head[x]; head[x]=cnt; } inline void reset(int now) { for (register int i=head[now];i!=-1;i=e[i].next) ++f[e[i].to]; } inline void top_sort(void) { register int i; int H=0,T=0; for (i=1;i<=n;++i) if (!in[i]) q[++T]=i,reset(i); while (H<T) { int now=q[++H]; for (register int i=head[now];i!=-1;i=e[i].next) { f[e[i].to]+=f[now]; if (!(--in[e[i].to])) q[++T]=e[i].to; } } } int main() { freopen("chain.in","r",stdin); freopen("chain.out","w",stdout); register int i; read(n); read(m); memset(head,-1,sizeof(head)); memset(e,-1,sizeof(e)); for (i=1;i<=m;++i) { read(x); read(y); add(x,y); ++in[y]; ++out[x]; } for (top_sort(),i=1;i<=n;++i) if (!out[i]) ans+=f[i]; return printf("%lld",ans),0; }
我去題目怎麼又是那麼長。
可是讀懂題意以後你就會發現,這道題就是NOI2010 超級鋼琴的樹上版本。
對於超級鋼琴,不會的同窗能夠看一下sol,這裏就再也不贅述。
而後在樹上怎麼弄,很簡單的套路倍增。
考慮維護兩個東西\(father_{i,j}\)表示\(i\)向上\(2^j\)個點的節點,\(f_{i,j}\)同理,表示的是最大值。
而後咱們肯定這條鏈下方的點,那麼對於上面的點就要求\(sum_{father_{i,0}}\)最小了。仍是倍增\(log\)級別解決。
後面的堆等操做大同小異,其實關於樹的題目倍增真的很萬能。
CODE
#include<cstdio> #include<cctype> #include<queue> using namespace std; const int N=500005,P=25; int n,m,l,r,sum[N],father[N][P],dep[N]; long long ans; struct data { int s,l,r,t; bool operator <(const data x) const { return sum[x.s]-sum[father[x.t][0]]>sum[s]-sum[father[t][0]]; } }; struct RMQ { int x,num; }f[N][P]; priority_queue<data> big; inline char tc(void) { static char fl[100000],*A=fl,*B=fl; return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++; } inline void read(int &x) { x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1; while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag; } inline int min(int a,int b) { return a<b?a:b; } inline void RMQ_init(void) { register int i,j; for (j=1;j<P;++j) for (i=1;i<=n;++i) father[i][j]=father[father[i][j-1]][j-1]; for (j=1;j<P;++j) for (i=1;i<=n;++i) if (dep[i]>=1<<j) f[i][j]=f[i][j-1].x<f[father[i][j-1]][j-1].x?f[i][j-1]:f[father[i][j-1]][j-1]; } inline int getfa(int x,int y) { for (register int i=P-1;i>=0;--i) if (y&(1<<i)) x=father[x][i]; return x; } inline int getmin(int x,int y) { RMQ MIN=f[x][0]; for (register int i=P-1;i>=0;--i) if (dep[father[y][i]]>=dep[x]) MIN=MIN.x<f[y][i].x?MIN:f[y][i],y=father[y][i]; return MIN.num; } int main() { freopen("oj.in","r",stdin); freopen("oj.out","w",stdout); register int i; read(n); for (i=1;i<=n;++i) read(father[i][0]); for (i=1;i<=n;++i) { read(sum[i]); sum[i]+=sum[father[i][0]]; dep[i]=dep[father[i][0]]+1; f[i][0]=(RMQ){sum[father[i][0]],i}; } read(m); read(l); read(r); RMQ_init(); for (i=1;i<=n;++i) if (dep[i]>=l) { int L=getfa(i,min(r-1,dep[i]-1)),R=getfa(i,l-1); big.push((data){i,L,R,getmin(L,R)}); } while (m--) { data now=big.top(); big.pop(); ans+=sum[now.s]-sum[father[now.t][0]]; if (now.l^now.t) big.push((data){now.s,now.l,father[now.t][0],getmin(now.l,father[now.t][0])}); if (now.r^now.t) { int next=dep[now.s]-dep[now.t]; next=getfa(now.s,next-1); big.push((data){now.s,next,now.r,getmin(next,now.r)}); } } return printf("%lld",ans),0; }