Reddit大型求助現場:用機器學習去實現通用人工智能,白日夢!

  來源:reddit
  <strong><strong>【新智元導讀】</strong>通用人工智能(AGI)一直是人工智能學科的核心目標,但如今咱們離真正的 AGI 還很遠。今天的 Reddit 最熱帖是一個關於 AGI 的討論,發帖人的夢想是建立 AGI,但卻被派去處理 NLP 領域的 ML 問題。他發現本身很是厭倦機器學習,因而熱心的網友紛紛爲他支招。戳右邊連接上 <a data-miniprogram-app="" data-miniprogram-path="pages/group-detail/index" data-miniprogram-nickname="新智元" data-miniprogram-type="text" data-miniprogram-servicetype="">新智元小程序</a> 瞭解更多!</strong>
  人工智能學科的核心目標是,有朝一日咱們可以建造像人類同樣聰明的機器。這樣的系統一般被稱爲通用人工智能系統(AGI)。
  到目前爲止,咱們已經創建了無數 AI 系統,在特定任務中的表現能夠超過人類,可是當涉及到通常的腦力活動時,目前尚未一個 AI 系統可以比得上老鼠,更別說超過人類了。
  今天的 Reddit 最熱帖就是一個關於 AGI 的討論。一位名叫「u/bguerra91」的發起者在大學裏研究,在過去的幾周裏,被派去處理一些屬於 NLP 領域的 ML 問題。經過閱讀全部關於 NLP 的文章,他意識到本身已經很是厭倦機器學習這一學科,徹底忘記了最初促使他走上這條路的是努力解決建立 AGI 的工程挑戰。
  如今,他開始從新考慮這個問題,他很好奇到底有多少人在解決這個問題?有不少數據科學家或業餘愛好者使用 ML 構建預測模型,可是誰將 ML 用做專門用於 AGI 工程設計的工具呢?對於這些人,發起者還問了 3 個問題:
  <strong>1、6 年+深度學習算法工程師解答:用現代的 ML 方法實現 AGI 是一個白日夢</strong>
  這個帖子引起了機器學習社區的大討論,其中,最高讚的回答來自一位作了 6 年以上尖端深度學習算法的工程師。在他看來:
  咱們比過去更接近 AGI。儘管媒體的報道和展現手法很花哨,但全部現代的深度學習工具都容易受到觀察誤差的影響(甚至是無監督的算法!)由於在現實中,你沒法獲取無限的數據,並且你的模型中可能有一些罕見的數據實例,你沒法在訓練階段獲取這些實例,因此在許多實際應用中,不可能 100% 完整地描述你的數據空間。
  人類有辦法繞開這一點,這就引出了個人下一點,即現代學習算法仍然徹底沒法解釋他們從未遇到過的罕見觀測,徹底不一樣於人類或 AGI 系統。此外,人類大腦徹底理解一個事物並用極少的例子對其屬性進行推斷的能力使人難以置信。
  最後,我要指出強化算法的成功與失敗。有一段時間,算法在許多遊戲環境中擊敗了最好的人類專家。但不久以後,人類專家學會了算法所使用的策略,並操縱這個因素,使其可以始終如一地擊敗算法。<strong>這是現代 ML 的另外一個短時間趨勢,即它沒法根據長期反饋動態地改變本身的行爲</strong>(由於專家知道如何戰勝它,因此它將永遠輸給專家,但若是不從新訓練新的人類反饋,它將永遠沒法改變本身的行爲,使其再次具備競爭力——人類能夠學着戰勝下一個模型)
  我並非說這很糟糕,也不是破壞 ML,由於我絕對喜歡 ML 和 DL,並且我喜歡我所作的事情。但我認爲,認識到這一點很是重要,<strong>深度學習模型是重現大腦某些方面(例如人類視覺系統輸入(CNN))的一種好方法,但它們毫不能描述人類大腦內部信息的整個處理過程</strong>(在視覺刺激以前,大腦會對其進行許多高級處理)。
  在我看來,<strong>須要將有關外部世界的完整感官輸入以及可能的情感迴路與當前的深度學習方法結合起來</strong>,以再現 GI,而咱們離解決這個問題還差得很遠。它還須要可以以一種通用的方式動態地調節其自身的內存和網絡,以與人類 GI 競爭。
  綜上所述,若是你由於必須研究 NLP 而感到厭煩,那麼,我認爲這是一個公平的迴應。我認爲 NLP 使人印象深入,但仍遠沒有人類對現實世界中事物的推理方式。語言是咱們全部感官,感受和思想之間的基礎整合,幾乎你在大腦中所能想到的每一件事均可以用語言來表達。它是存在的最複雜的代碼之一,它捕獲了咱們整個世界中的每一個實體。
  當前狀態下的 NLP 算法與我在上面概述的方法同樣,對環境感知是不可知的,儘管它們可能實現高性能,但它們永遠不會對未遇到的事情進行推理,生成不依賴於訓練輸入的邏輯思惟過程,或以無可辯駁的方式經過圖靈測試。你有權感到厭倦,由於<strong>若是計劃使用現代的 ML 方法來實現目標,AGI 是一個白日夢</strong>。
  在我看來,有不少與 AGI 無關的 DL 應用是很是有趣的,DL 實際上在某些方面能夠比人類作得更好。實際上,AGI 模型可能甚至不如深度學習模型那樣好。一個很好的例子是我正在從事的另外一個項目:預測患病的患者病情惡化的可能性。這是醫生可能會想到的事情,可是世界上大多數醫生將沒法給出準確的風險確切數字。可是,深度學習模型能夠對患者的將來結果作出使人印象深入的預測。這代表 DL 和 AGI 都有各自的優勢,而且我認爲若是找到目標明確的 DL 應用,你會更高興。
  在我看來,現在全部人都想研究 NLP,但我認爲在其餘許多領域中也存在着巨大的機遇,只是尚未被人注意到。NLP 已經很是成熟,我認爲你應該堅持下去,努力找到一個目標讓你以爲 intellectually rewarded。
  <strong>2、AGI 儘管離成功還很遠,但咱們或許正朝着成功的方向前進</strong>
  還有很多網友分享了本身的看法。
  <strong>MichaelMMeskhi 認爲:</strong>
  AGI 是一個不錯的想法,但不幸的是,咱們離甚至是基本的 AGI 系統還很遠。許多在 ML/AI/DS 中取得突破的工具正在進行優化和自動化(AutoML 等)。
  我建議讀讀 Sebastian Thrun 的書《Learning to Learn》,它討論了人類和機器是如何學習的,以及什麼是學習。
  <strong>下面是 NikeTheSword 對於 3 個問題的回答:</strong>
<strong>  Simulation_Brain 的回答:</strong>
  你聽到的回答幾乎都來自於你尋求答案的其餘人。這裏的評論者說關於 AGI 的工做並不存在,或者離完成還差得很遠,可是他們沒有資格去猜想,由於他們沒有認真地考慮過。
  Deepmind、openAI 和大約 20 家規模較小的公司正在積極開發 AGI。這只是機器學習行業的一小部分,但它是很是真實的。至於他們離成功是近仍是遠,這是一個懸而未決的問題,不少人對此進行了深刻的思考並存在許多爭論。
  以此類推,有不少人爭辯說,比空氣重的飛機是遙遠的,直到萊特兄弟實現了這一目標。固然,確實距今一百年前有人說過一樣的話。在真正實現以前,很難猜想什麼是可能的,更不用說須要花多長時間才能實現。
  因此你須要至關深刻的專業知識才能得出本身的最佳猜想。
  <strong>papajan18 也分享了本身的觀點:</strong>
  1. 我在本科學習了 4 年的計算機科學和機器學習,並用機器學習對神經科學數據進行了數據分析。如今我開始攻讀博士學位,研究人類/齧齒動物的元學習、強化學習以及深度學習模型。
  2. 我真的很關心 AGI,但願有一天人類可以實現。我認爲從計算的角度來看待人類/動物是如何造成智力的及其基本原理,這很是重要。並非說咱們必須複製天然,可是動物/人類是咱們惟一真正的智力實例,所以關注他們是如何完成咱們但願人工智能來完成的這些任務的,這很重要。
  我真的建議你研究心理學/認知科學/神經科學。這樣作的好處是,你可以思考相似 AGI 的問題,由於你正在作機器學習還不能作到的事情。缺點是涉及的工程學較少,由於它更多的是一門科學,因此人們試圖讓事情更簡單,這樣就更容易解決問題。
  使用機器學習的好處是,你能夠真正深刻研究複雜的工程模型。一些人的工做與這兩者都有關係(好比 Deepmind,他們在研究機器學習的同時也作一些心理學/神經科學方面的工做),這真的很酷,由於你在創建和理解智能方面都能作到最好。我但願本身在研究生期間可以同時涉足這兩者。
  3. AGI 離咱們還很遠,但我確實以爲咱們在朝着這個目標邁進。我認爲深度學習真的很重要,但它不是所有。我認爲這對錶徵學習很是有用(從咱們的世界中獲取輸入,學習它的良好表徵,促進智能行爲)。所以,AGI 可能會在其餘方面使用深度學習。深度強化學習是一個很好的例子(不是說它是 AGI。這是一個步驟,但它有其自身的問題),由於你基本上只是在添加一個神經網絡,去學習良好的狀態表徵形式,並將其輸入到強化學習框架中。我在注意的另外一件事是機率編程和貝葉斯模型。
  <strong>3、23 位頂尖 AI 專家預測:通用人工智能可能在 2099 年實現</strong>
  儘管關於 AGI 的話題在人工智能領域一直被普遍討論,但研究人員對於這一宏偉目標什麼時候實現的問題上,幾乎從未達成一致意見。
  2018 年出版的《智能架構》一書中,該書的做者、將來學家馬丁·福特採訪了 AI 領域的 23 位最傑出的人物,其中<strong>包括 DeepMind 首席執行官 Demis Hassabis,谷歌 AI 首席執行官 Jeff Dean 和斯坦福 AI 負責人李飛飛等。</strong>
  其中一個話題要求受訪對象作出預測,咱們在哪一年可以有 50% 的機會成功實現通用人工智能?
  在 23 位受訪者中,有 18 人回答了這個問題,但只有兩人願意具名回答。
  有趣的是,這兩我的給出的答案是最極端的:谷歌的將來學家和工程總監 Ray Kurzweil 認爲,這個時間爲 2029 年。而 iRobot 聯合創始人 Rodney Brooks 的回答則是 2200 年。其他人給出的答案在這兩個時間點之間,平均算下來,這個時間點爲 2099 年。
  福特說,這個調查顯示出專家們對這個問題的有趣的分歧,不是關於什麼時候實現 AGI,而是使用現有方法是否可能實現 AGI。
  一些研究人員表示,如今大部分基本工具和條件都已經具有了,實現 AGI 只須要時間和精力了。還有人則表示,咱們目前仍然缺乏實現這一目標所需的重大技術突破。
  目前 AI 研究人員的大量成果都基於深度學習,這部分人傾向於認爲將來的進步離不開神經網絡,即當代 AI 的核心。而具備其餘 AI 背景的人認爲,實現 AGI 須要經過其餘方法,好比符號邏輯。不管哪一種方式,對這個問題都存在至關大的分歧。
  福特說:「深度學習陣營中的一些人很是看不起在 AI 中直接設計常識之類的東西。他們認爲這種想法很愚蠢。有人說,這就像是要把一些信息直接粘貼到大腦中同樣。」
  許多專家認爲,咱們目前還缺乏實現 AGI 的一些必要技術基礎。
  全部受訪專家都提到當前 AI 系統的侷限性,並提到了目前還沒有掌握的關鍵技術。包括遷移學習、無監督學習等。(目前絕大多數機器學習方法都要依賴人工標記數據,這是 AI 技術發展的嚴重瓶頸。)
  對於如何研究 AGI、AGI 什麼時候可以實現,你有什麼高見?算法

相關文章
相關標籤/搜索