設計一個緩存系統,不得不要考慮的問題就是:緩存穿透、緩存擊穿與失效時的雪崩效應java
緩存穿透是指查詢一個必定不存在的數據,因爲緩存是不命中時被動寫的,而且出於容錯考慮,若是從存儲層查不到數據則不寫入緩存,這將致使這個不存在的數據每次請求都要到存儲層去查詢,失去了緩存的意義。在流量大時,可能DB就掛掉了,要是有人利用不存在的key頻繁攻擊咱們的應用,這就是漏洞。舉例:如發起爲id爲「-1」的數據或id爲特別大不存在的數據。這時的用戶極可能是攻擊者,攻擊會致使數據庫壓力過大。
解決方式:redis
緩存雪崩是指在咱們設置緩存時採用了相同的過時時間,致使緩存在某一時刻同時失效,請求所有轉發到DB,DB瞬時壓力太重雪崩。
解決方式:
(1)加鎖或者隊列的方式保證緩存的單線 程(進程)寫,從而避免失效時大量的併發請求落到底層存儲系統上
(2)將緩存失效時間分散開,好比咱們能夠在原有的失效時間基礎上增長一個隨機值,好比1-5分鐘隨機,這樣每個緩存的過時時間的重複率就會下降,就很難引起集體失效的事件數據庫
對於一些設置了過時時間的key,若是這些key可能會在某些時間點被超高併發地訪問,是一種很是「熱點」的數據。這個時候,須要考慮一個問題:緩存被「擊穿」的問題,這個和緩存雪崩的區別在於這裏針對某一key緩存,前者則是不少key。
緩存在某個時間點過時的時候,剛好在這個時間點對這個Key有大量的併發請求過來,這些請求發現緩存過時通常都會從後端DB加載數據並回設到緩存,這個時候大併發的請求可能會瞬間把後端DB壓垮。
解決方式:
(1)使用互斥鎖(mutex key)
這種解決方案思路比較簡單,就是隻讓一個線程構建緩存,其餘線程等待構建緩存的線程執行完,從新從緩存獲取數據就能夠了(以下圖)
若是是單機,能夠用synchronized或者lock來處理,若是是分佈式環境能夠用分佈式鎖就能夠了(分佈式鎖,能夠用memcache的add, redis的setnx, zookeeper的添加節點操做)。後端
下面是memcache的僞代碼實現:緩存
if (memcache.get(key) == null) { // 3 min timeout to avoid mutex holder crash if (memcache.add(key_mutex, 3 * 60 * 1000) == true) { value = db.get(key); memcache.set(key, value); memcache.delete(key_mutex); } else { sleep(50); retry(); } }
若是換成redis,就是:安全
String get(String key) { String value = redis.get(key); if (value == null) { if (redis.setnx(key_mutex, "1")) { // 3 min timeout to avoid mutex holder crash redis.expire(key_mutex, 3 * 60) value = db.get(key); redis.set(key, value); redis.delete(key_mutex); } else { //其餘線程休息50毫秒後重試 Thread.sleep(50); get(key); } } }
(2)"提早"使用互斥鎖(mutex key):
在value內部設置1個超時值(timeout1), timeout1比實際的memcache timeout(timeout2)小。當從cache讀取到timeout1發現它已通過期時候,立刻延長timeout1並從新設置到cache。而後再從數據庫加載數據並設置到cache中。僞代碼以下:併發
v = memcache.get(key); if (v == null) { if (memcache.add(key_mutex, 3 * 60 * 1000) == true) { value = db.get(key); memcache.set(key, value); memcache.delete(key_mutex); } else { sleep(50); retry(); } } else { if (v.timeout <= now()) { if (memcache.add(key_mutex, 3 * 60 * 1000) == true) { // extend the timeout for other threads v.timeout += 3 * 60 * 1000; memcache.set(key, v, KEY_TIMEOUT * 2); // load the latest value from db v = db.get(key); v.timeout = KEY_TIMEOUT; memcache.set(key, value, KEY_TIMEOUT * 2); memcache.delete(key_mutex); } else { sleep(50); retry(); } } }
(3)"永遠不過時":
這裏的「永遠不過時」包含兩層意思:
(1) 從redis上看,確實沒有設置過時時間,這就保證了,不會出現熱點key過時問題,也就是「物理」不過時。
(2) 從功能上看,若是不過時,那不就成靜態的了嗎?因此咱們把過時時間存在key對應的value裏,若是發現要過時了,經過一個後臺的異步線程進行緩存的構建,也就是「邏輯」過時
從實戰看,這種方法對於性能很是友好,惟一不足的就是構建緩存時候,其他線程(非構建緩存的線程)可能訪問的是老數據,可是對於通常的互聯網功能來講這個仍是能夠忍受。異步
String get(final String key) { V v = redis.get(key); String value = v.getValue(); long timeout = v.getTimeout(); if (v.timeout <= System.currentTimeMillis()) { // 異步更新後臺異常執行 threadPool.execute(new Runnable() { public void run() { String keyMutex = "mutex:" + key; if (redis.setnx(keyMutex, "1")) { // 3 min timeout to avoid mutex holder crash redis.expire(keyMutex, 3 * 60); String dbValue = db.get(key); redis.set(key, dbValue); redis.delete(keyMutex); } } }); } return value; }
(4)資源保護:
netflix的hystrix,能夠作資源的隔離保護主線程池,若是把這個應用到緩存的構建也何嘗不可。
分佈式
四種方案對比:
做爲一個併發量較大的互聯網應用,咱們的目標有3個:
1. 加快用戶訪問速度,提升用戶體驗。
2. 下降後端負載,保證系統平穩。
3. 保證數據「儘量」及時更新(要不要徹底一致,取決於業務,而不是技術。)
四種方法以下比較,仍是那就話:沒有最好,只有最合適。高併發
解決方案 | 優勢 | 缺點 |
---|---|---|
簡單分佈式鎖(Tim yang) | 1. 思路簡單2. 保證一致性 | 1. 代碼複雜度增大2. 存在死鎖的風險3. 存在線程池阻塞的風險 |
加另一個過時時間(Tim yang) | 1. 保證一致性 | 同上 |
不過時(本文) | 1. 異步構建緩存,不會阻塞線程池 | 1. 不保證一致性。2. 代碼複雜度增大(每一個value都要維護一個timekey)。3. 佔用必定的內存空間(每一個value都要維護一個timekey)。 |
資源隔離組件hystrix(本文) | 1. hystrix技術成熟,有效保證後端。2. hystrix監控強大。 | 1. 部分訪問存在降級策略。 |
總結以下:
1. 熱點key + 過時時間 + 複雜的構建緩存過程 => mutex key問題 2. 構建緩存一個線程作就能夠了。 3. 四種解決方案:沒有最佳只有最合適。
針對業務系統,永遠都是具體狀況具體分析,沒有最好,只有最合適。 最後,對於緩存系統常見的緩存滿了和數據丟失問題,須要根據具體業務分析,一般咱們採用LRU策略處理溢出,Redis的RDB和AOF持久化策略來保證必定狀況下的數據安全。