如何提高springboot服務吞吐量

背景

生產環境偶爾會有一些慢請求致使系統性能降低,吞吐量降低,下面介紹幾種優化建議。java

方案

一、undertow替換tomcat

電子商務類型網站大多都是短請求,通常響應時間都在100ms,這時能夠將web容器從tomcat替換爲undertow,下面介紹下步驟: 一、增長pom配置web

<dependency>
            <groupid>org.springframework.boot</groupid>
            <artifactid>spring-boot-starter-web</artifactid>
            <exclusions>
                <exclusion>
                    <groupid>org.springframework.boot</groupid>
                    <artifactid>spring-boot-starter-tomcat</artifactid>
                </exclusion>
            </exclusions>
        </dependency>
<dependency>
            <groupid>org.springframework.boot</groupid>
            <artifactid>spring-boot-starter-undertow</artifactid>
        </dependency>

二、增長相關配置redis

server:
  undertow:
    direct-buffers: true
    io-threads: 4
    worker-threads: 160

從新啓動能夠在控制檯看到容器已經切換爲undertow了spring

二、緩存

將部分熱點數據或者靜態數據放到本地緩存或者redis中,若是有須要能夠定時更新緩存數據緩存

三、異步

在代碼過程當中咱們不少代碼都不須要等返回結果,也就是部分代碼是能夠並行執行,這個時候可使用異步,最簡單的方案是使用springboot提供的@Async註解,固然也能夠經過線程池來實現,下面簡單介紹下異步步驟。 一、pom依賴 通常springboot引入web相關依賴就行tomcat

<dependency>
            <groupid>org.springframework.boot</groupid>
            <artifactid>spring-boot-starter-web</artifactid>
        </dependency>

二、在啓動類中增長@EnableAsync註解springboot

@EnableAsync
@SpringBootApplication
public class AppApplication
{
    public static void main(String[] args)
    {
        SpringApplication.run(AppApplication.class, args);
    }
}

三、須要時在指定方法中增長@Async註解,若是是須要等待返回值,則demo以下異步

@Async
    public Future<string> doReturn(int i){
        try {
            // 這個方法須要調用500毫秒
            Thread.sleep(500);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        // 消息彙總
        return new AsyncResult&lt;&gt;("異步調用");
    }

四、若是有線程變量或者logback中的mdc,能夠增長傳遞ide

import org.slf4j.MDC;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.TaskDecorator;
import org.springframework.scheduling.annotation.AsyncConfigurerSupport;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.Map;
import java.util.concurrent.Executor;

/**
 * @Description:
 */
@EnableAsync
@Configuration
public class AsyncConfig extends AsyncConfigurerSupport {
    @Override
    public Executor getAsyncExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setTaskDecorator(new MdcTaskDecorator());
        executor.initialize();
        return executor;
    }
}

class MdcTaskDecorator implements TaskDecorator {

    @Override
    public Runnable decorate(Runnable runnable) {
        Map<string, string> contextMap = MDC.getCopyOfContextMap();
        return () -&gt; {
            try {
                MDC.setContextMap(contextMap);
                runnable.run();
            } finally {
                MDC.clear();
            }
        };
    }
}

五、有時候異步須要增長阻塞spring-boot

import lombok.extern.slf4j.Slf4j;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;

@Configuration
@Slf4j
public class TaskExecutorConfig {

    @Bean("localDbThreadPoolTaskExecutor")
    public Executor threadPoolTaskExecutor() {
        ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
        taskExecutor.setCorePoolSize(5);
        taskExecutor.setMaxPoolSize(200);
        taskExecutor.setQueueCapacity(200);
        taskExecutor.setKeepAliveSeconds(100);
        taskExecutor.setThreadNamePrefix("LocalDbTaskThreadPool");
        taskExecutor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor executor) -&gt; {
                    if (!executor.isShutdown()) {
                        try {
                            Thread.sleep(300);
                            executor.getQueue().put(r);
                        } catch (InterruptedException e) {
                            log.error(e.toString(), e);
                            Thread.currentThread().interrupt();
                        }
                    }
                }
        );
        taskExecutor.initialize();
        return taskExecutor;
    }


}

四、業務拆分

能夠將比較耗時或者不一樣的業務拆分出來提供單節點的吞吐量

五、集成消息隊列

有不少場景對數據實時性要求不那麼強的,或者對業務進行業務容錯處理時能夠將消息發送到kafka,而後延時消費。舉個例子,根據條件查詢指定用戶發送推送消息,這裏能夠時按時、按天、按月等等,這時就 在這裏插入圖片描述 </string,></string>

相關文章
相關標籤/搜索