目錄python
import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os
# do not print irrelevant information # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# x: [60k,28,28] # y: [60k] (x, y), _ = datasets.mnist.load_data()
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [==============================] - 1s 0us/step
# transform Tensor # x: [0~255] ==》 [0~1.] x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32)
f'x.shape: {x.shape}, y.shape: {y.shape}, x.dtype: {x.dtype}, y.dtype: {y.dtype}'
"x.shape: (60000, 28, 28), y.shape: (60000,), x.dtype: <dtype: 'float32'>, y.dtype: <dtype: 'int32'>"
f'min_x: {tf.reduce_min(x)}, max_x: {tf.reduce_max(x)}'
'min_x: 0.0, max_x: 1.0'
f'min_y: {tf.reduce_min(y)}, max_y: {tf.reduce_max(y)}'
'min_y: 0, max_y: 9'
# batch of 128 train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128) train_iter = iter(train_db) sample = next(train_iter) f'batch: {sample[0].shape,sample[1].shape}'
'batch: (TensorShape([128, 28, 28]), TensorShape([128]))'
# [b,784] ==> [b,256] ==> [b,128] ==> [b,10] # [dim_in,dim_out],[dim_out] w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) b1 = tf.Variable(tf.zeros([256])) w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) b2 = tf.Variable(tf.zeros([128])) w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1)) b3 = tf.Variable(tf.zeros([10]))
# learning rate lr = 1e-3
for epoch in range(10): # iterate db for 10 # tranin every train_db for step, (x, y) in enumerate(train_db): # x: [128,28,28] # y: [128] # [b,28,28] ==> [b,28*28] x = tf.reshape(x, [-1, 28*28]) with tf.GradientTape() as tape: # only data types of tf.variable are logged # x: [b,28*28] # h1 = x@w1 + b1 # [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256] h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256]) h1 = tf.nn.relu(h1) # [b,256] ==> [b,128] # h2 = x@w2 + b2 # b2 can broadcast automatic h2 = h1 @ w2 + b2 h2 = tf.nn.relu(h2) # [b,128] ==> [b,10] out = h2 @ w3 + b3 # compute loss # out: [b,10] # y:[b] ==> [b,10] y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2) # [b,10] loss = tf.square(y_onehot - out) # mean:scalar loss = tf.reduce_mean(loss) # compute gradients grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # w1 = w1 - lr * w1_grad # w1 = w1 - lr * grads[0] # not in situ update # in situ update w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) if step % 100 == 0: print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}')
epoch:0, step: 0, loss:0.5366693735122681 epoch:0, step: 100, loss:0.23276552557945251 epoch:0, step: 200, loss:0.19647717475891113 epoch:0, step: 300, loss:0.17389704287052155 epoch:0, step: 400, loss:0.1731622964143753 epoch:1, step: 0, loss:0.16157487034797668 epoch:1, step: 100, loss:0.16654588282108307 epoch:1, step: 200, loss:0.15311869978904724 epoch:1, step: 300, loss:0.14135733246803284 epoch:1, step: 400, loss:0.14423415064811707 epoch:2, step: 0, loss:0.13703864812850952 epoch:2, step: 100, loss:0.14255204796791077 epoch:2, step: 200, loss:0.1302051544189453 epoch:2, step: 300, loss:0.12224273383617401 epoch:2, step: 400, loss:0.12742099165916443 epoch:3, step: 0, loss:0.1219201311469078 epoch:3, step: 100, loss:0.12757658958435059 epoch:3, step: 200, loss:0.11587800830602646 epoch:3, step: 300, loss:0.10984969139099121 epoch:3, step: 400, loss:0.11641304194927216 epoch:4, step: 0, loss:0.11171815544366837 epoch:4, step: 100, loss:0.11717887222766876 epoch:4, step: 200, loss:0.10604140907526016 epoch:4, step: 300, loss:0.10111508518457413 epoch:4, step: 400, loss:0.10865814983844757 epoch:5, step: 0, loss:0.10434548556804657 epoch:5, step: 100, loss:0.10952303558588028 epoch:5, step: 200, loss:0.09875871241092682 epoch:5, step: 300, loss:0.09467941522598267 epoch:5, step: 400, loss:0.10282392799854279 epoch:6, step: 0, loss:0.09874211996793747 epoch:6, step: 100, loss:0.10355912148952484 epoch:6, step: 200, loss:0.09315416216850281 epoch:6, step: 300, loss:0.08971598744392395 epoch:6, step: 400, loss:0.0982089415192604 epoch:7, step: 0, loss:0.09428335726261139 epoch:7, step: 100, loss:0.09877124428749084 epoch:7, step: 200, loss:0.08866965025663376 epoch:7, step: 300, loss:0.08573523908853531 epoch:7, step: 400, loss:0.09440126270055771 epoch:8, step: 0, loss:0.09056715667247772 epoch:8, step: 100, loss:0.09483197331428528 epoch:8, step: 200, loss:0.0849832147359848 epoch:8, step: 300, loss:0.08246967941522598 epoch:8, step: 400, loss:0.09117519855499268 epoch:9, step: 0, loss:0.08741479367017746 epoch:9, step: 100, loss:0.09150294959545135 epoch:9, step: 200, loss:0.08185736835002899 epoch:9, step: 300, loss:0.07972464710474014 epoch:9, step: 400, loss:0.08842341601848602