Spark版本定製七:Spark Streaming源碼解讀之JobScheduler內幕實現和深度思考

本期內容:java

1,JobScheduler內幕實現微信

2,JobScheduler深度思考併發

 

摘要:JobScheduler是Spark Streaming整個調度的核心,其地位至關於Spark Core上的調度中心中的DAGScheduler!app

         

1、JobScheduler內幕實現

問:JobScheduler是在什麼地方生成的?ide

答:JobScheduler是在StreamingContext實例化時產生的,從StreamingContext的源碼第183行中能夠看出:oop

      private[streaming] val scheduler = new JobScheduler(this)post

 

問:Spark Streaming爲啥要設置兩條線程? 
答:setMaster指定的兩條線程是指程序運行的時候至少須要兩條線程。一條線程用於接收數據,須要不斷的循環。另外一條是處理線程,是咱們本身指定的線程數用於做業處理。如StreamingContext的start()方法所示:
ui

def start(): Unit = synchronized {
    state match {
      case INITIALIZED =>
        startSite.set(DStream.getCreationSite())
        StreamingContext.ACTIVATION_LOCK.synchronized {
          StreamingContext.assertNoOtherContextIsActive()
          try {
            validate()

            // Start the streaming scheduler in a new thread, so that thread local properties
            // like call sites and job groups can be reset without affecting those of the
            // current thread.
//Spark Streaming內部啓動的線程,用於整個做業的調度 ThreadUtils.runInNewThread("streaming-start") { sparkContext.setCallSite(startSite.get) sparkContext.clearJobGroup() sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false") scheduler.start() } state = StreamingContextState.ACTIVE } catch { case NonFatal(e) => logError("Error starting the context, marking it as stopped", e) scheduler.stop(false) state = StreamingContextState.STOPPED throw e } StreamingContext.setActiveContext(this) } shutdownHookRef = ShutdownHookManager.addShutdownHook( StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown) // Registering Streaming Metrics at the start of the StreamingContext assert(env.metricsSystem != null) env.metricsSystem.registerSource(streamingSource) uiTab.foreach(_.attach()) logInfo("StreamingContext started") case ACTIVE => logWarning("StreamingContext has already been started") case STOPPED => throw new IllegalStateException("StreamingContext has already been stopped") } }

進入JobScheduler源碼:this

/**
JobScheduler負責邏輯層面的Job,並將其物理級別的運行在Spark之上 * This class schedules jobs to be run on Spark. It uses the JobGenerator to generate * the jobs and runs them using a thread pool.
*/ private[streaming] class JobScheduler(val ssc: StreamingContext) extends Logging { //經過JobSet集合,不斷地存放接收到的Job private val jobSets: java.util.Map[Time, JobSet] = new ConcurrentHashMap[Time, JobSet]
//設置並行度,默認爲1,想要修改做業運行的並行度在spark-conf或者應用程序中修改此值就中
爲何要修改併發度呢?
答:有時候應用程序中有多個輸出,會致使多個job的執行,都是在一個batchDurations裏面,job之間執行無需互相等待,因此能夠經過設置此值併發執行!
不一樣的Batch,線程池中有不少的線程,也能夠併發運行! private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
//將邏輯級別的Job轉化爲物理級別的job就是經過newDaemonFixedThreadPool線程實現的 private val jobExecutor = ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")
//實例化JobGenerator private val jobGenerator = new JobGenerator(this) val clock = jobGenerator.clock val listenerBus = new StreamingListenerBus()
//下面三個是說在JobScheduler啓動時實例化 // These two are created only when scheduler starts. // eventLoop not being null means the scheduler has been started and not stopped var receiverTracker: ReceiverTracker = null // A tracker to track all the input stream information as well as processed record number var inputInfoTracker: InputInfoTracker = null private var eventLoop: EventLoop[JobSchedulerEvent] = null def start(): Unit = synchronized { if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler") eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") { override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } eventLoop.start() // attach rate controllers of input streams to receive batch completion updates for { inputDStream <- ssc.graph.getInputStreams rateController <- inputDStream.rateController } ssc.addStreamingListener(rateController) listenerBus.start(ssc.sparkContext) receiverTracker = new ReceiverTracker(ssc) inputInfoTracker = new InputInfoTracker(ssc) receiverTracker.start() jobGenerator.start() logInfo("Started JobScheduler") }

2、JobScheduler深度思考

下面從應用程序的輸出方法print()入手,反推Job的生成過程:spa

1.點擊應用程序中的print()方法後,跳入DStream的print():

/**
 * Print the first ten elements of each RDD generated in this DStream. This is an output
 * operator, so this DStream will be registered as an output stream and there materialized.
 */
def print(): Unit = ssc.withScope {
  print(10)
}

2.再次點擊上面紅線標記的print()方法:

   

/**
 * Print the first num elements of each RDD generated in this DStream. This is an output
 * operator, so this DStream will be registered as an output stream and there materialized.
 */
def print(num: Int): Unit = ssc.withScope {
  def foreachFunc: (RDD[T], Time) => Unit = {
    (rdd: RDD[T], time: Time) => {
      val firstNum = rdd.take(num + 1)
      // scalastyle:off println
      println("-------------------------------------------")
      println("Time: " + time)
      println("-------------------------------------------")
      firstNum.take(num).foreach(println)
      if (firstNum.length > num) println("...")
      println()
      // scalastyle:on println
    }
  }
  foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
}

從圖中紅色標記的代碼能夠得出:SparkStreaming最終執行的時候仍是對RDD進行各類邏輯級別的操做!

3.再次點擊圖上的foreachRDD進入foreachRDD方法:

  

/**
 * Apply a function to each RDD in this DStream. This is an output operator, so
 * 'this' DStream will be registered as an output stream and therefore materialized.
 * @param foreachFunc foreachRDD function
 * @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
 *                           in the `foreachFunc` to be displayed in the UI. If `false`, then
 *                           only the scopes and callsites of `foreachRDD` will override those
 *                           of the RDDs on the display.
 */
private def foreachRDD(
    foreachFunc: (RDD[T], Time) => Unit,
    displayInnerRDDOps: Boolean): Unit = {
  new ForEachDStream(this,
    context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register()
}

4.點擊上圖的ForEachDStream進入ForEachDStream類並找到了generateJob方法:

   

/**
 * An internal DStream used to represent output operations like DStream.foreachRDD.
 * @param parent        Parent DStream
 * @param foreachFunc   Function to apply on each RDD generated by the parent DStream
 * @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
 *                           by `foreachFunc` will be displayed in the UI; only the scope and
 *                           callsite of `DStream.foreachRDD` will be displayed.
 */
private[streaming]
class ForEachDStream[T: ClassTag] (
    parent: DStream[T],
    foreachFunc: (RDD[T], Time) => Unit,
    displayInnerRDDOps: Boolean
  ) extends DStream[Unit](parent.ssc) {

  override def dependencies: List[DStream[_]] = List(parent)

  override def slideDuration: Duration = parent.slideDuration

  override def compute(validTime: Time): Option[RDD[Unit]] = None
  //根據時間間隔不斷的產生Job
  override def generateJob(time: Time): Option[Job] = {
    parent.getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
//基於時間生成的RDD,因爲是輸出,因此是最後一個RDD,接下來咱們只要找出哪兒調用ForEachDStream的generateJob方法,就能知道job最終的生成 foreachFunc(rdd, time) } Some(new Job(time, jobFunc)) case None => None } } }

5.上一講中咱們得出了以下的流程:

    streamingcontext.start-->jobscheduler.start-->receiverTracker.start()-->JobGenterator.start()-->EventLoop-->processEvent()-->generateJobs()-->jobScheduler.receiverTracker.allocateBlocksToBatch(time)-->graph.generateJobs(time)  

 其中最後的graph.generateJobs是DSTreamGraph的方法,進入之:

   

def generateJobs(time: Time): Seq[Job] = {
  logDebug("Generating jobs for time " + time)
  val jobs = this.synchronized {
    //此時的outputStream就是forEachDStream
    outputStreams.flatMap { outputStream =>
      val jobOption = outputStream.generateJob(time)
      jobOption.foreach(_.setCallSite(outputStream.creationSite))
      jobOption
    }
  }
  logDebug("Generated " + jobs.length + " jobs for time " + time)
  jobs
}

private val outputStreams = new ArrayBuffer[DStream[_]]()

經過查看DStream的子類繼承結構和上面的ForEachDStream的generateJob方法,得出DStream的子類中只有ForEachDStream override了DStream的generateJob!
最終得出結論:
generateJob方法中:真正Job的生成是經過ForeachDStream的generateJob來生成的,此時的job是邏輯級別的,真正被物理級別的調用是在JobGenerator中
/** Generate jobs and perform checkpoint for the given `time`.  */
  private def generateJobs(time: Time) {
    // Set the SparkEnv in this thread, so that job generation code can access the environment
    // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
    // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
    SparkEnv.set(ssc.env)
    Try {
      jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
      case Success(jobs) =>
        val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
        jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
    }
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
  }

進入jobScheduler.submitJobSet方法:

//將邏輯級別的Job轉化爲物理級別的job就是經過newDaemonFixedThreadPool線程實現的
  private val jobExecutor =
    ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")
def submitJobSet(jobSet: JobSet) {
    if (jobSet.jobs.isEmpty) {
      logInfo("No jobs added for time " + jobSet.time)
    } else {
      listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
      jobSets.put(jobSet.time, jobSet)
      jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
      logInfo("Added jobs for time " + jobSet.time)
    }
  }

至此,整個job的生成、執行就很是清晰了,最後總結以下:

從上一講中,咱們得知JobScheduler包含兩個核心組件JobGenerator和ReceiverTracker,它們分別負責Job的生成和源數據的接收,

ReceiverTracker啓動後會致使運行在Executor端的Receiver啓動而且接收數據,ReceiverTracker會記錄Receiver接收到的數據meta信息,  

JobGenerator的啓動致使每隔BatchDuration,就調用DStreamGraph生成RDD Graph,並生成Job,

JobScheduler中的線程池來提交封裝的JobSet對象(時間值,Job,數據源的meta)。Job中封裝了業務邏輯,致使最後一個RDD的action被觸發,

被DAGScheduler真正調度在Spark集羣上執行該Job。

 

特別感謝王家林老師的獨具一格的講解:

王家林老師名片:

中國Spark第一人

新浪微博:http://weibo.com/ilovepains

微信公衆號:DT_Spark

博客:http://blog.sina.com.cn/ilovepains

QQ:1740415547

YY課堂:天天20:00現場授課頻道68917580

相關文章
相關標籤/搜索