""" 利用numpy實現一個兩層的全鏈接網絡 網絡結構是:input ->(w1) fc_h -> relu ->(w2) output 數據是隨機出的 """ import numpy as np #維度和大小參數定義 batch_size = 64 input_dim = 1000 output_dim = 10 hidden_dim = 100 # 數據虛擬 (x,y) # 每行是一條數據 輸入是64*1000,1000表示有1000維度的特徵 輸出是64*100 # 訓練完參數以後,若對一條數據forward,直接運用w1 w2參數便可 # 使用relu激活函數 x = np.random.randn(batch_size,input_dim) y = np.random.randn(batch_size,output_dim) #定義要訓練的參數 w1(1000*100) w2(100*10) # 方便起見,不設bisa w1 = np.random.randn(input_dim,hidden_dim) w2 = np.random.randn(hidden_dim,output_dim) # lr lr = 1e-06 #實現 for i in range(500): #迭代500次 #前向傳播 h = x.dot(w1) #隱藏層 h_relu = np.maximum(h,0) #relu激活函數 y_hat = h_relu.dot(w2) #計算損失 loss = np.square(y_hat - y).sum() #計算梯度 y_hat_grad = 2.0*(y_hat-y) w2_grad = h_relu.T.dot(y_hat_grad) h_relu_grad = y_hat_grad.dot(w2.T) h_grad = h_relu_grad.copy() h_grad[h < 0] = 0 w1_grad = x.T.dot(h_grad) #更新參數 w1 = w1 - lr*w1_grad w2 = w2 - lr*w2_grad #print("epoch "+str(i)+" end......") #print("參數w1:") #print(w1) #print("參數w1:") #print(w2)
""" 使用pytorch實現上面的二層神經網絡 """ # pytorch中 ## 內積 # tensor.mm(tensor) ## 轉置 # tensor.t() ## 乘方運算 # tensor.pow(n) import torch device = torch.device('cpu') # device = torch.device('cuda') # Uncomment this to run on GPU # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random input and output data x = torch.randn(N, D_in, device=device) y = torch.randn(N, D_out, device=device) # Randomly initialize weights w1 = torch.randn(D_in, H, device=device) w2 = torch.randn(H, D_out, device=device) learning_rate = 1e-6 for t in range(500): # Forward pass: compute predicted y h = x.mm(w1) h_relu = h.clamp(min=0) y_pred = h_relu.mm(w2) # Compute and print loss; loss is a scalar, and is stored in a PyTorch Tensor # of shape (); we can get its value as a Python number with loss.item(). loss = (y_pred - y).pow(2).sum() #print(t, loss.item()) # Backprop to compute gradients of w1 and w2 with respect to loss grad_y_pred = 2.0 * (y_pred - y) grad_w2 = h_relu.t().mm(grad_y_pred) grad_h_relu = grad_y_pred.mm(w2.t()) grad_h = grad_h_relu.clone() grad_h[h < 0] = 0 grad_w1 = x.t().mm(grad_h) # Update weights using gradient descent w1 -= learning_rate * grad_w1 w2 -= learning_rate * grad_w2
""" 使用pytorch的自動求導 從新實現 """ import torch device = torch.device('cpu') # device = torch.device('cuda') # Uncomment this to run on GPU # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold input and outputs x = torch.randn(N, D_in, device=device) y = torch.randn(N, D_out, device=device) # Create random Tensors for weights; setting requires_grad=True means that we # want to compute gradients for these Tensors during the backward pass. w1 = torch.randn(D_in, H, device=device, requires_grad=True) w2 = torch.randn(H, D_out, device=device, requires_grad=True) learning_rate = 1e-6 for t in range(500): # Forward pass: compute predicted y using operations on Tensors. Since w1 and # w2 have requires_grad=True, operations involving these Tensors will cause # PyTorch to build a computational graph, allowing automatic computation of # gradients. Since we are no longer implementing the backward pass by hand we # don't need to keep references to intermediate values. y_pred = x.mm(w1).clamp(min=0).mm(w2) # Compute and print loss. Loss is a Tensor of shape (), and loss.item() # is a Python number giving its value. loss = (y_pred - y).pow(2).sum() #print(t, loss.item()) # Use autograd to compute the backward pass. This call will compute the # gradient of loss with respect to all Tensors with requires_grad=True. # After this call w1.grad and w2.grad will be Tensors holding the gradient # of the loss with respect to w1 and w2 respectively. loss.backward() # Update weights using gradient descent. For this step we just want to mutate # the values of w1 and w2 in-place; we don't want to build up a computational # graph for the update steps, so we use the torch.no_grad() context manager # to prevent PyTorch from building a computational graph for the updates with torch.no_grad(): w1 -= learning_rate * w1.grad w2 -= learning_rate * w2.grad # Manually zero the gradients after running the backward pass w1.grad.zero_() w2.grad.zero_()
# 本身定義網絡的一層實現 # 定義本身Relu類,繼承自Function函數 # 必須同時實現forward和backward # 前向傳播時,forward用的本身定義的這個 # 反向傳播時,必然會再找本身實現的這個backward,如不寫,則no implment error class MyReLU(torch.autograd.Function): """ We can implement our own custom autograd Functions by subclassing torch.autograd.Function and implementing the forward and backward passes which operate on Tensors. """ @staticmethod def forward(ctx, x): """ In the forward pass we receive a context object and a Tensor containing the input; we must return a Tensor containing the output, and we can use the context object to cache objects for use in the backward pass. """ ctx.save_for_backward(x) return x.clamp(min=0) @staticmethod def backward(ctx, grad_output): """ In the backward pass we receive the context object and a Tensor containing the gradient of the loss with respect to the output produced during the forward pass. We can retrieve cached data from the context object, and must compute and return the gradient of the loss with respect to the input to the forward function. """ x, = ctx.saved_tensors grad_x = grad_output.clone() grad_x[x < 0] = 0 return grad_x device = torch.device('cpu') # device = torch.device('cuda') # Uncomment this to run on GPU # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold input and output x = torch.randn(N, D_in, device=device) y = torch.randn(N, D_out, device=device) # Create random Tensors for weights. w1 = torch.randn(D_in, H, device=device, requires_grad=True) w2 = torch.randn(H, D_out, device=device, requires_grad=True) learning_rate = 1e-6 for t in range(500): # Forward pass: compute predicted y using operations on Tensors; we call our # custom ReLU implementation using the MyReLU.apply function y_pred = MyReLU.apply(x.mm(w1)).mm(w2) # Compute and print loss loss = (y_pred - y).pow(2).sum() #print(t, loss.item()) # Use autograd to compute the backward pass. loss.backward() with torch.no_grad(): # Update weights using gradient descent w1 -= learning_rate * w1.grad w2 -= learning_rate * w2.grad # Manually zero the gradients after running the backward pass w1.grad.zero_() w2.grad.zero_()