如表1是模糊語言的肯定,認爲肯定小程序
人類模糊語言 | 負大 | 負中 | 負小 | 負零 | 正零 | 正小 | 正中 | 正大 |
符號 | NL | NM | NS | N0 | P0 | PS | PM | PL |
對於人類模糊語言,每個語言(例如:負大)分紅 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 這些等級。函數
Espa μ(E)設計 語言blog |
-6ci |
-5數學 |
-4io |
-3table |
-2變量 |
-1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
E1 NL |
1.0 |
0.8 |
0.4 |
0.1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
E2 NM |
0.2 |
0.7 |
1 |
0.7 |
0.2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
E3 NS |
0 |
0 |
0.1 |
0.5 |
1 |
0.8 |
0.3 |
0 |
0 |
0 |
0 |
0 |
0 |
E4 ZO |
0 |
0 |
0 |
0 |
0.1 |
0.6 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
E5 PS |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0.6 |
0.1 |
0 |
0 |
0 |
E6 PM |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0.1 |
0.2 |
0.7 |
1 |
0.2 |
E7 PL |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0.1 |
0.1 |
0.4 |
0.8 |
E的隸屬度表格
EC u(EC) 語言 |
-6 |
-5 |
-4 |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
E1 NL |
1.0 |
0.8 |
0.4 |
0.1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
E2 NM |
0.2 |
0.7 |
1 |
0.7 |
0.2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
E3 NS |
0 |
0 |
0.1 |
0.5 |
1 |
0.8 |
0.3 |
0 |
0 |
0 |
0 |
0 |
0 |
E4 ZO |
0 |
0 |
0 |
0 |
0.1 |
0.6 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
E5 PS |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0.6 |
0.1 |
0 |
0 |
0 |
E6 PM |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0.1 |
0.2 |
0.7 |
1 |
0.2 |
E7 PL |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0.1 |
0.1 |
0.4 |
0.8 |
EC的隸屬度表格
U u(U) 語言 |
-6 |
-5 |
-4 |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
E1 NL |
1.0 |
0.8 |
0.4 |
0.1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
E2 NM |
0.2 |
0.7 |
1 |
0.7 |
0.2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
E3 NS |
0 |
0 |
0.1 |
0.5 |
1 |
0.8 |
0.3 |
0 |
0 |
0 |
0 |
0 |
0 |
E4 ZO |
0 |
0 |
0 |
0 |
0.1 |
0.6 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
E5 PS |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0.6 |
0.1 |
0 |
0 |
0 |
E6 PM |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0.1 |
0.2 |
0.7 |
1 |
0.2 |
E7 PL |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0.1 |
0.1 |
0.4 |
0.8 |
U的隸屬度表格
根據這個隸屬度表格,結合MATLAB,本身就能夠寫個小程序,從而畫出各個等級的對於某個語言的隸屬函數圖像。
以下是示意的隸屬度函數圖像:
根據人類描述的模糊語言控制規則能夠很容易得出:IF E=Ei and EC=ECj then U=Uij ,也就是能夠用數學模糊表示爲:R=∪(Ei