Android性能優化之GraphicsStatsService(2)

這篇博客參考老羅的文章:http://blog.csdn.net/luoshengyang/article/details/45601143。java

1.JankTracker的初始化流程

上一篇博客詳細分析了GraphicsStatsService的工做流程,還遺留了一個問題就是各類卡頓類型的信息具體是怎麼統計的。在回答這個問題以前咱們先來看另一個疑問:android

上一篇博客中說過,JankTracker是在initThreadLocal()中被初始化的:canvas

void RenderThread::initThreadLocals() {
    nsecs_t frameIntervalNanos = static_cast<nsecs_t>(1000000000 / mDisplayInfo.fps);
    mTimeLord.setFrameInterval(frameIntervalNanos);
    initializeDisplayEventReceiver();
    mEglManager = new EglManager(*this);
    mRenderState = new RenderState(*this);
    mJankTracker = new JankTracker(frameIntervalNanos);
}

這個函數定義在文件frameworks/base/libs/hwui/renderthread/RenderThread.cpp中。windows

那麼這initThreadLocal()怎麼被調用的呢?讓咱們從硬件渲染的初始化流程開始提及數組

根據老羅的博客,Activity組件在建立的過程當中,也就是在其生命週期函數onCreate的調用過程當中,通常會經過調用另一個成員函數 setContentView建立和初始化關聯的窗口視圖,最後經過調用ViewRoot類的成員函數setView完成這一過程。到了Android 4.0以後,ViewRoot類的名字改爲了ViewRootImpl,它們的做用仍然同樣的。       app

Android應用程序UI硬件加速渲染環境的初始化過程是在ViewRootImpl類的成員函數setView開始,以下:ide

public final class ViewRootImpl implements ViewParent,
        View.AttachInfo.Callbacks, HardwareRenderer.HardwareDrawCallbacks {
    ......

    public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {
        synchronized (this) {
            if (mView == null) {
                mView = view;
                ......

                if (view instanceof RootViewSurfaceTaker) {
                    mSurfaceHolderCallback =
                            ((RootViewSurfaceTaker)view).willYouTakeTheSurface();
                    if (mSurfaceHolderCallback != null) {
                        mSurfaceHolder = new TakenSurfaceHolder();
                        mSurfaceHolder.setFormat(PixelFormat.UNKNOWN);
                    }
                }

                ......

                // If the application owns the surface, don't enable hardware acceleration
                if (mSurfaceHolder == null) {
                    enableHardwareAcceleration(attrs);
                }

                ......
            }
        }
    }

    ......
}

這個函數定義在文件frameworks/base/core/java/android/view/ViewRootImpl.java中。函數

參數view描述的是當前正在建立的Activity窗口的頂級視圖。若是它實現了RootViewSurfaceTaker接口,而且經過該接口的成 員函數willYouTakeTheSurface提供了一個SurfaceHolder.Callback2接口,那麼就代表應用程序想本身接管對窗口 的一切渲染操做。這樣建立出來的Activity窗口就相似於一個SurfaceView同樣,徹底由應用程序本身來控制它的渲染。oop

       基本上咱們是不會將一個Activity窗口看成一個SurfaceView來使用的,所以在ViewRootImpl類的成員變量 mSurfaceHolder將保持爲null值,這樣就會致使ViewRootImpl類的成員函數 enableHardwareAcceleration被調用爲判斷是否須要爲當前建立的Activity窗口啓用硬件加速渲染。post

private void enableHardwareAcceleration(WindowManager.LayoutParams attrs) {
        mAttachInfo.mHardwareAccelerated = false;
        mAttachInfo.mHardwareAccelerationRequested = false;

        // Don't enable hardware acceleration when the application is in compatibility mode
        if (mTranslator != null) return;

        // Try to enable hardware acceleration if requested
        final boolean hardwareAccelerated =
                (attrs.flags & WindowManager.LayoutParams.FLAG_HARDWARE_ACCELERATED) != 0;

        if (hardwareAccelerated) {
            if (!HardwareRenderer.isAvailable()) {
                return;
            }

            // Persistent processes (including the system) should not do
            // accelerated rendering on low-end devices.  In that case,
            // sRendererDisabled will be set.  In addition, the system process
            // itself should never do accelerated rendering.  In that case, both
            // sRendererDisabled and sSystemRendererDisabled are set.  When
            // sSystemRendererDisabled is set, PRIVATE_FLAG_FORCE_HARDWARE_ACCELERATED
            // can be used by code on the system process to escape that and enable
            // HW accelerated drawing.  (This is basically for the lock screen.)

            final boolean fakeHwAccelerated = (attrs.privateFlags &
                    WindowManager.LayoutParams.PRIVATE_FLAG_FAKE_HARDWARE_ACCELERATED) != 0;
            final boolean forceHwAccelerated = (attrs.privateFlags &
                    WindowManager.LayoutParams.PRIVATE_FLAG_FORCE_HARDWARE_ACCELERATED) != 0;

            if (fakeHwAccelerated) {
                // This is exclusively for the preview windows the window manager
                // shows for launching applications, so they will look more like
                // the app being launched.
                mAttachInfo.mHardwareAccelerationRequested = true;
            } else if (!HardwareRenderer.sRendererDisabled
                    || (HardwareRenderer.sSystemRendererDisabled && forceHwAccelerated)) {
                if (mAttachInfo.mHardwareRenderer != null) {
                    mAttachInfo.mHardwareRenderer.destroy();
                }

                final boolean translucent = attrs.format != PixelFormat.OPAQUE;
                mAttachInfo.mHardwareRenderer = HardwareRenderer.create(mContext, translucent);
                if (mAttachInfo.mHardwareRenderer != null) {
                    mAttachInfo.mHardwareRenderer.setName(attrs.getTitle().toString());
                    mAttachInfo.mHardwareAccelerated =
                            mAttachInfo.mHardwareAccelerationRequested = true;
                }
            }
        }
    }

這個函數定義在文件frameworks/base/core/java/android/view/ViewRootImpl.java中。

這裏面的大部分操做都是在處理是否開始硬件加速。雖然硬件加速渲染是個好東西,可是也不是每個須要繪製UI的進程都必需的。這樣作是考慮到兩個因素。第一個因素是並非全部的Canvas API均可以被GPU支持。若是應用程序使用到了這些不被GPU支持的API,那麼就須要禁用硬件加速渲染。第二個因素是支持硬件加速渲染的代價是增長了 內存開銷。例如,只是硬件加速渲染環境初始化這一操做,就要花掉8M的內存。因此有的進程就不適合開啓硬件加速,主要是Persistent進程和System進程,詳細看老羅博客。

上述代碼中重點的是這句:

mAttachInfo.mHardwareRenderer = HardwareRenderer.create(mContext, translucent);

若是當前建立的窗口支持硬件加速渲染,那麼就會調用HardwareRenderer類的靜態成員函數create建立一個 HardwareRenderer對象,而且保存在與該窗口關聯的一個AttachInfo對象的成員變量mHardwareRenderer 中。這個HardwareRenderer對象之後將負責執行窗口硬件加速渲染的相關操做。

那麼這個HardwareRenderer是何方神聖呢?讓咱們繼續往下看。

public abstract class HardwareRenderer {
    ......

    static HardwareRenderer create(Context context, boolean translucent) {
        HardwareRenderer renderer = null;
        if (GLES20Canvas.isAvailable()) {
            renderer = new ThreadedRenderer(context, translucent);
        }
        return renderer;
    }

    ......
}

這個函數定義在文件frameworks/base/core/java/android/view/HardwareRenderer.java。

能夠看到,若是當前設備支持GLES2.0,才能開啓硬件加速,經過ThreadedRenderer來完成這個加速任務。這個類繼承於HardwareRenderer。這意思着Android硬件加速目前只支持GLES?

接下來咱們就繼續分析ThreadedRenderer對象的建立過程,以下所示:

public class ThreadedRenderer extends HardwareRenderer {
    ......

    private long mNativeProxy;
    ......
    private RenderNode mRootNode;
    ......

    ThreadedRenderer(Context context, boolean translucent) {
        ......

        long rootNodePtr = nCreateRootRenderNode();
        mRootNode = RenderNode.adopt(rootNodePtr);
        ......
        mNativeProxy = nCreateProxy(translucent, rootNodePtr);

        AtlasInitializer.sInstance.init(context, mNativeProxy);

        ......
    }

    ......
}

能夠看到,ThreadedRenderer在構造函數中主要乾了三件事,新建了一個RootRenderNode,一個ThreadProxy和調用AtlasInitializer進行資源集的初始化。

這裏咱們先看看第二個,由於這玩意兒上一篇博客咱們好像看過。很明顯這是一個JNI調用,Native層對應的實現是:

static jlong android_view_ThreadedRenderer_createProxy(JNIEnv* env, jobject clazz,
        jboolean translucent, jlong rootRenderNodePtr) {
    RootRenderNode* rootRenderNode = reinterpret_cast<RootRenderNode*>(rootRenderNodePtr);
    ContextFactoryImpl factory(rootRenderNode);
    return (jlong) new RenderProxy(translucent, rootRenderNode, &factory);
}

這個函數定義在文件frameworks/base/core/jni/android_view_ThreadedRenderer.cpp中。

這裏利用了上面生成的rootRenderNode來生成了一個RenderProxy,看來這個rootRenderNode仍是挺重要的,之後有機會再看吧,先看看RenderProxy的構造函數:

RenderProxy::RenderProxy(bool translucent, RenderNode* rootRenderNode, 
     IContextFactory* contextFactory)
        : mRenderThread(RenderThread::getInstance())
        , mContext(0) {
    SETUP_TASK(createContext);
    args->translucent = translucent;
    args->rootRenderNode = rootRenderNode;
    args->thread = &mRenderThread;
    args->contextFactory = contextFactory;
    mContext = (CanvasContext*) postAndWait(task);
    mDrawFrameTask.setContext(&mRenderThread, mContext);
}

這個函數定義在文件frameworks/base/libs/hwui/renderthread/RenderProxy.cpp中。

RenderProxy類有三個重要的成員變量mRenderThread、mContext和mDrawFrameTask,它們的類型分別爲 RenderThread、CanvasContext和DrawFrameTask。其中,mRenderThread描述的就是Render Thread,mContext描述的是一個畫布上下文,mDrawFrameTask描述的是一個用來執行渲染任務的Task。接下來咱們先重點分析RenderThread的初始化過程。

從構造函數中能夠看出,mRenderThread的默認值是RenderThread::getInstance(),這個應該是個單例模式,也就是說在一個Android應用程序進程中,只有一個Render Thread存在。

繼續看RenderThread的構造過程:

RenderThread::RenderThread() : Thread(true), Singleton<RenderThread>()
        ...... {
    mFrameCallbackTask = new DispatchFrameCallbacks(this);
    mLooper = new Looper(false);
    run("RenderThread");
}

這個函數定義在文件frameworks/base/libs/hwui/renderthread/RenderThread.cpp中。

這裏一樣也幹了三件事情,新建了一個DispatchFrameCallbacks,一個Looper和調用了run函數。

 DispatchFrameCallbacks對象,用來描述一個幀繪製任務。下面描述RenderThread的運行模型時,咱們再詳細分析。RenderThread類的成員變量mLooper指向一個Looper對象,RenderThread經過它來建立一個消息驅動運行模型,相似於Main Thread的消息驅動運行模型。

RenderThread類是從Thread類繼承下來的,當咱們調用它的成員函數run的時候,就會建立一個新的線程。這個新的線程的入口點函數爲RenderThread類的成員函數threadLoop,它的實現以下所示:

bool RenderThread::threadLoop() {
    .......
    initThreadLocals();

    int timeoutMillis = -1;
    for (;;) {
        int result = mLooper->pollOnce(timeoutMillis);
        ......

        nsecs_t nextWakeup;
        // Process our queue, if we have anything
        while (RenderTask* task = nextTask(&nextWakeup)) {
            task->run();
            // task may have deleted itself, do not reference it again
        }
        if (nextWakeup == LLONG_MAX) {
            timeoutMillis = -1;
        } else {
            nsecs_t timeoutNanos = nextWakeup - systemTime(SYSTEM_TIME_MONOTONIC);
            timeoutMillis = nanoseconds_to_milliseconds(timeoutNanos);
            if (timeoutMillis < 0) {
                timeoutMillis = 0;
            }
        }

        if (mPendingRegistrationFrameCallbacks.size() && !mFrameCallbackTaskPending) {
            drainDisplayEventQueue(true);
            mFrameCallbacks.insert(
                    mPendingRegistrationFrameCallbacks.begin(), 
             mPendingRegistrationFrameCallbacks.end());
            mPendingRegistrationFrameCallbacks.clear();
            requestVsync();
        }
    }

    return false;
}

這個函數定義在文件frameworks/base/libs/hwui/renderthread/RenderThread.cpp中。

在這裏終於看了咱們索要找的initThreadLocals()!很激動有木有~也就是說在硬件初始化渲染的時候,即當一個窗口視圖初始化的時候,其對應的JankTracker就已經被創建起來了,等到窗口視圖真正渲染的時候,用來統計渲染信息。

2.渲染統計信息的收集過程

接上一篇博客,要弄懂渲染信息的收集過程,咱們就得知道JankTracker::addFrame是在哪裏被調用的。首先讓咱們回頭去看看這個函數:

void JankTracker::addFrame(const FrameInfo& frame) {
    mData->totalFrameCount++;
    using namespace FrameInfoIndex;
    // Fast-path for jank-free frames
    int64_t totalDuration = frame[kFrameCompleted] - frame[kIntendedVsync];
    uint32_t framebucket = frameCountIndexForFrameTime(
            totalDuration,  (sizeof(mData->frameCounts) / sizeof(mData->frameCounts[0])) );
    //keep the fast path as fast as possible
    if (CC_LIKELY(totalDuration < mFrameInterval)) {
        mData->frameCounts[framebucket]++;
        return;
    }

    //exempt this frame, so drop it
    if (frame[kFlags] & EXEMPT_FRAMES_FLAGS) {
        return;
    }

    mData->frameCounts[framebucket]++;
    mData->jankFrameCount++;

    for (int i = 0; i < NUM_BUCKETS; i++) {
        int64_t delta = frame[COMPARISONS[i].end] - frame[COMPARISONS[i].start];
        if (delta >= mThresholds[i] && delta < IGNORE_EXCEEDING) {
            mData->jankTypeCounts[i]++;
        }
    }
}

咱們能夠發現,這個函數有一個重要的參數FrameInfo類型的frame!這好像仍是個數組。統計信息就是直接從它身上取出來的。趕忙地,咱們去看看這個類:

class FrameInfo {
public:
    void importUiThreadInfo(int64_t* info);

    void markSyncStart() {
        mFrameInfo[FrameInfoIndex::kSyncStart] = systemTime(CLOCK_MONOTONIC);
    }

    void markIssueDrawCommandsStart() {
        mFrameInfo[FrameInfoIndex::kIssueDrawCommandsStart] = systemTime(CLOCK_MONOTONIC);
    }

    void markSwapBuffers() {
        mFrameInfo[FrameInfoIndex::kSwapBuffers] = systemTime(CLOCK_MONOTONIC);
    }

    void markFrameCompleted() {
        mFrameInfo[FrameInfoIndex::kFrameCompleted] = systemTime(CLOCK_MONOTONIC);
    }

    int64_t operator[](FrameInfoIndexEnum index) const {
        if (index == FrameInfoIndex::kNumIndexes) return 0;
        return mFrameInfo[static_cast<int>(index)];
    }

    int64_t operator[](int index) const {
        if (index < 0 || index >= FrameInfoIndex::kNumIndexes) return 0;
        return mFrameInfo[static_cast<int>(index)];
    }

private:
    int64_t mFrameInfo[FrameInfoIndex::kNumIndexes];
};

這個類定義在frameworks/base/libs/hwui/FrameInfo.h文件中

能夠看到,FrameInfo裏面有不少markXXXStart的函數,這些函數的功能都是一樣的,就是記錄系統如今的時間放在mFrameInfo的不一樣位置中!很明顯,這是在記錄一個幀每個渲染階段的開始時間,以便後來作卡頓的統計。

同時在同一個文件中,還有另一個類UiFrameInfoBuilder

class ANDROID_API UiFrameInfoBuilder {
public:
    UiFrameInfoBuilder(int64_t* buffer) : mBuffer(buffer) {
        memset(mBuffer, 0, UI_THREAD_FRAME_INFO_SIZE * sizeof(int64_t));
    }

    UiFrameInfoBuilder& setVsync(nsecs_t vsyncTime, nsecs_t intendedVsync) {
        mBuffer[FrameInfoIndex::kVsync] = vsyncTime;
        mBuffer[FrameInfoIndex::kIntendedVsync] = intendedVsync;
        return *this;
    }

    UiFrameInfoBuilder& addFlag(FrameInfoFlagsEnum flag) {
        mBuffer[FrameInfoIndex::kFlags] |= static_cast<uint64_t>(flag);
        return *this;
    }

private:
    int64_t* mBuffer;
};

一樣這裏的setVsync函數記錄了kVsync和kIntendedVsync的時間。所以,如今的問題就變成了這個函數和上面的那些markXXXStart函數是在何時被調用的?

經過搜索,咱們能夠發現,這些函數都是在同一個類中被調用的,那就是CanvasContext!主要涉及到兩個函數:CanvasContext::prepareTree和CanvasContext::draw。下面咱們看看這個三個函數,咱們按時間的前後一個個看:

// Called by choreographer to do an RT-driven animation
void CanvasContext::doFrame() {
   ...
    int64_t frameInfo[UI_THREAD_FRAME_INFO_SIZE];
    UiFrameInfoBuilder(frameInfo)
        .addFlag(FrameInfoFlags::kRTAnimation)
        .setVsync(mRenderThread.timeLord().computeFrameTimeNanos(),
                mRenderThread.timeLord().latestVsync());

    TreeInfo info(TreeInfo::MODE_RT_ONLY, mRenderThread.renderState());
    prepareTree(info, frameInfo);
    if (info.out.canDrawThisFrame) {
        draw();
    }
}

這個doFrame函數定義在frameworks/base/libs/hwui/renderthread/CanvasContext.cpp中。

該函數首先新建了一個frameInfo數組來存放幀的各類渲染信息,大小是UI_THREAD_FRAME_INFO_SIZE,實際上是9,具體的定義以下:

#define UI_THREAD_FRAME_INFO_SIZE 9

HWUI_ENUM(FrameInfoIndex,
    kFlags = 0,
    kIntendedVsync,
    kVsync,
    kOldestInputEvent,
    kNewestInputEvent,
    kHandleInputStart,
    kAnimationStart,
    kPerformTraversalsStart,
    kDrawStart,
    // End of UI frame info

    kSyncStart,
    kIssueDrawCommandsStart,
    kSwapBuffers,
    kFrameCompleted,

    // Must be the last value!
    kNumIndexes
);

這個枚舉定義在frameworks/base/libs/hwui/FrameInfo.h中

這個9其實就是下面的HWUI_ENUM枚舉類型前9個的意思,能夠從註釋中看到,這9個是UI幀的信息。

而後doFrame調用了UiFrameInfoBuilder來添加兩個重要的時間,kVsync和kIntendedVsync,這兩個是都是經過調用mRenderThread.timeLord()的相關函數來得到。再接着定義了一個TreeInfo類型的info,並和frameInfo傳給了prepareTree。下面咱們看看prepareTree。

void CanvasContext::prepareTree(TreeInfo& info, int64_t* uiFrameInfo) {
    mRenderThread.removeFrameCallback(this);

    mCurrentFrameInfo = &mFrames.next();
    mCurrentFrameInfo->importUiThreadInfo(uiFrameInfo);
    mCurrentFrameInfo->markSyncStart();

    info.damageAccumulator = &mDamageAccumulator;
    info.renderer = mCanvas;
    if (mPrefetechedLayers.size() && info.mode == TreeInfo::MODE_FULL) {
        info.canvasContext = this;
    }
    mAnimationContext->startFrame(info.mode);
    mRootRenderNode->prepareTree(info);
    mAnimationContext->runRemainingAnimations(info);

    if (info.canvasContext) {
        freePrefetechedLayers();
    }
    ...
    int runningBehind = 0;
    // TODO: This query is moderately expensive, investigate adding some sort
    // of fast-path based off when we last called eglSwapBuffers() as well as
    // last vsync time. Or something.
    mNativeWindow->query(mNativeWindow.get(),
            NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND, &runningBehind);
    info.out.canDrawThisFrame = !runningBehind;

    if (info.out.hasAnimations || !info.out.canDrawThisFrame) {
        if (!info.out.requiresUiRedraw) {
            // If animationsNeedsRedraw is set don't bother posting for an RT anim
            // as we will just end up fighting the UI thread.
            mRenderThread.postFrameCallback(this);
        }
    }
}

這個函數定義在frameworks/base/libs/hwui/renderthread/CanvasContext.cpp中,

這個函數首先調用mFrames.next()取出了一個mCurrentFrameInfo,而後經過importUiThreadInfo導入傳過來的那個uiFrameInfo,而後調用markSyncStart()記錄了SyncStart的時間點,代表Sync已經開始了,緊接着纔開始進行真正的業務處理,例如處理一些相關的動畫,和調用mRootRenderNode->prepareTree(info)來真正準備ViewTree,這應該是一個上傳視圖到GPU的過程。

prepareTree完成了之後,返回到frameInfo中,若是這個準備是成功的,下面就能夠調用Draw函數立刻開始繪製啦:

void CanvasContext::draw() {
    ...
    mCurrentFrameInfo->markIssueDrawCommandsStart();

    SkRect dirty;
    mDamageAccumulator.finish(&dirty);

    EGLint width, height;
    mEglManager.beginFrame(mEglSurface, &width, &height);
    if (width != mCanvas->getViewportWidth() || height != mCanvas->getViewportHeight()) {
        mCanvas->setViewport(width, height);
        dirty.setEmpty();
    } else if (!mBufferPreserved || mHaveNewSurface) {
        dirty.setEmpty();
    } else {
        if (!dirty.isEmpty() && !dirty.intersect(0, 0, width, height)) {
            ALOGW("Dirty " RECT_STRING " doesn't intersect with 0 0 %d %d ?",
                    SK_RECT_ARGS(dirty), width, height);
            dirty.setEmpty();
        }
        profiler().unionDirty(&dirty);
    }

    status_t status;
    if (!dirty.isEmpty()) {
        status = mCanvas->prepareDirty(dirty.fLeft, dirty.fTop,
                dirty.fRight, dirty.fBottom, mOpaque);
    } else {
        status = mCanvas->prepare(mOpaque);
    }

    Rect outBounds;
    status |= mCanvas->drawRenderNode(mRootRenderNode.get(), outBounds);

    profiler().draw(mCanvas);

    mCanvas->finish();

    profiler().markPlaybackEnd();

    // Even if we decided to cancel the frame, from the perspective of jank
    // metrics the frame was swapped at this point
    mCurrentFrameInfo->markSwapBuffers();

    if (status & DrawGlInfo::kStatusDrew) {
        swapBuffers();
    } else {
        mEglManager.cancelFrame();
    }

    // TODO: Use a fence for real completion?
    mCurrentFrameInfo->markFrameCompleted();
    mJankTracker.addFrame(*mCurrentFrameInfo);
    mRenderThread.jankTracker().addFrame(*mCurrentFrameInfo);
    profiler().finishFrame();
}

這個函數定義在frameworks/base/libs/hwui/renderthread/CanvasContext.cpp中,

一進來,就調用了markIssueDrawCommandsStart()記錄繪製命令開始的時間,而後作了一大堆的工做,都是在設置一個dirty和mCanvas,弄好了之後調用mCanvas->drawRenderNode、profiler().draw(mCanvas),mCanvas->finish()標誌着繪製工做的完成。

隨後,調用markSwapBuffers()來記錄開始交換緩衝區的時間,這是要開始顯示了麼?接着調用swapBuffers()來進行真正的緩衝交換工做,交換結束之後,這一個幀的繪製就所有完成了,調用markFrameCompleted()來記錄繪製的結束時間,最後這些記錄在mCurrentFrameInfo的幀信息添加到咱們的mJankTracker中,這樣,JankTracker就能統計渲染信息啦。

這樣,大部分的時間節點的記錄已是清除的了,除了兩個:kVsync和kIntendedVsync,前面說過,這兩個函數是由mRenderThread.timeLord().computeFrameTimeNanos()和mRenderThread.timeLord(). latestVsync()取得的。

nsecs_t TimeLord::computeFrameTimeNanos() {
    // Logic copied from Choreographer.java
    nsecs_t now = systemTime(CLOCK_MONOTONIC);
    nsecs_t jitterNanos = now - mFrameTimeNanos;
    if (jitterNanos >= mFrameIntervalNanos) {
        nsecs_t lastFrameOffset = jitterNanos % mFrameIntervalNanos;
        mFrameTimeNanos = now - lastFrameOffset;
    }
    return mFrameTimeNanos;
}

這個函數定義在frameworks/base/libs/hwui/renderthread/TimeLord.cpp

能夠看到這個函數除了特殊狀況下作了修正以外,是直接返回mFrameTimeNanos的。因此要看一下這個mFrameTimeNanos是怎麼被賦值的。就在同一個文件中:

bool TimeLord::vsyncReceived(nsecs_t vsync) {
    if (vsync > mFrameTimeNanos) {
        mFrameTimeNanos = vsync;
        return true;
    }
    return false;
}

mFrameTimeNanos被初始化爲0,因此當這個函數被調用的時候,vsync > mFrameTimeNanos成立,因此mFrameTimeNanos被賦值爲vsync,從函數名咱們能夠知道mFrameTimeNanos記錄的就是接收到vsync的時間,即kVsync的時間。

相關文章
相關標籤/搜索