機器學習與GIS研究進展

              機器學習與GIS研究進展算法

王少華網絡

    本文簡述了機器學習在GIS領域的新進展。app

    目前機器學習研究很熱,機器學習(ML),包括人工神經網絡(ANN)和支持向量機(SVM)等,爲智能地理環境數據分析、處理和可視化提供了極其重要的工具。機器學習是對地理統計學等傳統技術的重要補充。機器學習在空間數據處理中扮演重要角色,本文介紹了針對地理空間數據的幾種現代機器學習的應用,包括環境數據的區域分類,連續環境和污染數據的製圖,基於自動算法,優化(設計/從新設計)監測網絡等。詳細可參考文獻1。機器學習

     空間變換神經網絡成果的發表(文獻3),絕對值得用驚豔來描述。這篇文章是Google旗下的新銳AI公司DeepMind的四位劍橋Phd研究員發表的成果。卷積神經網絡(CNN)已經被證實可以訓練一個能力強大的分類模型,但與傳統的模式識別方法相似,它也會受到數據在空間上多樣性的影響。這篇Paper提出了一種叫作空間變換神經網絡(Spatial Transform Networks, STN),該網絡不須要關鍵點的標定,可以根據分類或者其它任務自適應地將數據進行空間變換和對齊(包括平移、縮放、旋轉以及其它幾何變換等)。在輸入數據在空間差別較大的狀況下,這個網絡能夠加在現有的卷積網絡中,提升分類的準確性。該論文中的案例包括在手寫文字識別、街景數字識別、鳥類分類以及共定位等方面。不久以後,能夠預料這篇文章的引用將飆升!參考文獻4就是基於此方法技術的學位論文。工具

      

        

參考文獻:學習

1.Kanevski, M., A. Pozdnukhov, and V. Timonin. "Machine learning algorithms for geospatial data. Applications and software tools." (2008).優化

2.Ostermann, F. "Hybrid geo-information processing: Crowdsourced supervision of geo-spatial machine learning tasks." Proceedings of the 18th AGILE International Conference on Geographic Information Science, Lisbon, Portugal. 2015.spa

3.Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." Advances in Neural Information Processing Systems. 2015..net

4.Chianucci, Daniel. "Detection in Aerial Images Using Spatial Transformer Networks." (2016).設計

5.Xie, Michael, et al. "Transfer learning from deep features for remote sensing and poverty mapping." arXiv preprint arXiv:1510.00098 (2015).

6.Jean, Neal, et al. "Combining satellite imagery and machine learning to predict poverty." Science 353.6301 (2016): 790-794.

7.Allen, Chris, et al. "Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza." PloS one 11.7 (2016): e0157734.

8.Weyand, Tobias, Ilya Kostrikov, and James Philbin. "Planet-photo geolocation with convolutional neural networks." European Conference on Computer Vision. Springer International Publishing, 2016.

9.Costea, Dragos, and Marius Leordeanu. "Aerial image geolocalization from recognition and matching of roads and intersections." arXiv preprint arXiv:1605.08323 (2016).

10.Sharma, Prafull, Michel Schoemaker, and David Pan. "Automated Image Timestamp Inference Using Convolutional Neural Networks." (2016).

11.Brahmbhatt, Samarth, and James Hays. "DeepNav: Learning to Navigate Large Cities." arXiv preprint arXiv:1701.09135 (2017).

12.Gupta, Saurabh, et al. "Cognitive Mapping and Planning for Visual Navigation." arXiv preprint arXiv:1702.03920 (2017).

13.Ma, Xiaolei, et al. "Large-scale transportation network congestion evolution prediction using deep learning theory." PloS one 10.3 (2015): e0119044.

14.Zhao, Wenzhi, et al. "On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery." International Journal of Remote Sensing 36.13 (2015): 3368-3379.

 

 

 

轉載請註明連接:https://my.oschina.net/u/2338162/blog/843723

相關文章
相關標籤/搜索