Disruptor的簡單介紹與應用

前言

最近工做比較忙,在工做項目中,看了不少人都本身實現了一套數據任務處理機制,我的感受有點亂,且也方便他人的後續維護,因此想到了一種數據處理模式,即生產者、緩衝隊列、消費者的模式來統一你們的實現邏輯。java

下面時是對Disruptor基本使用的演示。使用中須要引入依賴git

<dependency>
  <groupId>com.lmax</groupId>
  <artifactId>disruptor</artifactId>
  <version>3.4.2</version>
</dependency>

名稱解釋

  • Ring Buffergithub

    環境的緩存區,3.0版本之前被認爲是Disruptor的主要成員。3.0版本之後,環形緩衝區只負責經過Disruptor的事件方式來對數據進行存儲和更新。在一些高級的應用場景中,Ring Buffer能夠由用戶的自定義實現徹底替代。算法

  • Sequence緩存

    Disruptor使用Sequence做爲一種方法來肯定特定組件的位置。每一個使用者(EventProcessor)與Disruptor自己同樣維護一個序列。大多數併發代碼依賴於這些序列值的移動,所以序列支持AtomicLong的許多當前特性。事實上,二者之間惟一真正的區別是序列包含額外的功能,以防止序列和其餘值之間的錯誤共享。微信

  • Sequencer架構

    Sequencer是真正的核心,該接口的兩個實現(單生產者, 多消費者)實現了全部用於在生產者和使用者之間的快速、正確的傳遞數據的併發算法。併發

  • Sequence Barrier異步

    序列屏障由Sequencer產生,包含對Sequencer和任何依賴消費者的序列的引用。它包含肯定是否有任何事件可供使用者處理的邏輯。ide

  • Wait Strategy

    等待策略肯定消費者將如何等待生產者產生的消息,Disruptor將消息放到事件(Event)中。

  • Event

    從生產者到消費者的數據單位。不存在徹底由用戶定義的事件的特定代碼的表示形式。

  • EventProcessor

    EventProcessor持有特定消費者(Consumer)的Sequence,並提供用於調用事件處理實現的事件循環。

  • BatchEventProcessor

    BatchEventProcessor它包含事件循環的有效實現,並將回調到已使用的EventHandle接口實現。

  • EventHandler

    Disruptor定義的事件處理接口,由用戶實現,用於處理事件,是Consumer的真正實現。

  • Producer

    生產者,只是泛指調用Disruptor發佈事件的用戶代碼,Disruptor沒有定義特定接口或類型。

架構圖

簡單實用Disruptor

1 定義事件

事件就是經過Disruptor進行交換的數據類型。

package com.disruptor;

public class Data {

    private long value;

    public long getValue() {
        return value;
    }

    public void setValue(long value) {
        this.value = value;
    }
}

2 定義事件工廠

事件工廠定義瞭如何實例化第一步中定義的事件。Disruptor經過EventFactory在RingBuffer中預建立Event的實例。

一個Event實例被用做一個數據槽,發佈者發佈前,先從RingBuffer得到一個Event的實例,而後往Event實例中插入數據,而後再發布到RingBuffer中,最後由Consumer得到Event實例並從中讀取數據。

package com.disruptor;

import com.lmax.disruptor.EventFactory;

public class DataFactory implements EventFactory<Data> {

    @Override
    public Data newInstance() {
        return new Data();
    }
}

3 定義生產者

package com.disruptor;

import com.lmax.disruptor.RingBuffer;

import java.nio.ByteBuffer;

public class Producer {

    private final RingBuffer<Data> ringBuffer;

    public Producer(RingBuffer<Data> ringBuffer) {
        this.ringBuffer = ringBuffer;
    }

    public void pushData(ByteBuffer byteBuffer) {
        long sequence = ringBuffer.next();

        try {
            Data even = ringBuffer.get(sequence);
            even.setValue(byteBuffer.getLong(0));
        } finally {
            ringBuffer.publish(sequence);
        }
    }
}

4 定義消費者

package com.disruptor;

import com.lmax.disruptor.WorkHandler;

import java.text.MessageFormat;


public class Consumer implements WorkHandler<Data> {

    @Override
    public void onEvent(Data data) throws Exception {
        long result = data.getValue() + 1;

        System.out.println(MessageFormat.format("Data process : {0} + 1 = {1}", data.getValue(), result));
    }
}

5 啓動Disruptor

  • 測試Demo
package com.disruptor;

import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;

import java.nio.ByteBuffer;
import java.util.concurrent.ThreadFactory;


public class Main {

    private static final int NUMS = 10;

    private static final int SUM = 1000000;

    public static void main(String[] args) {
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        long start = System.currentTimeMillis();

        DataFactory factory = new DataFactory();

        int buffersize = 1024;

        Disruptor<Data> disruptor = new Disruptor<Data>(factory, buffersize, new ThreadFactory() {
            @Override
            public Thread newThread(Runnable r) {
                return new Thread(r);
            }
        });

        Consumer[] consumers = new Consumer[NUMS];
        for (int i = 0; i < NUMS; i++) {
            consumers[i] = new Consumer();
        }

        disruptor.handleEventsWithWorkerPool(consumers);
        disruptor.start();

        RingBuffer<Data> ringBuffer = disruptor.getRingBuffer();
        Producer producer = new Producer(ringBuffer);

        ByteBuffer bb = ByteBuffer.allocate(8);
        for (long i = 0; i < SUM; i++) {
            bb.putLong(0, i);
            producer.pushData(bb);
            System.out.println("Success producer data : " + i);
        }
        long end = System.currentTimeMillis();

        disruptor.shutdown();

        System.out.println("Total time : " + (end - start));
    }
}
  • 結果(部分結果展現)
Data process : 999,987 + 1 = 999,988
Success producer data : 999995
Data process : 999,990 + 1 = 999,991
Data process : 999,989 + 1 = 999,990
Data process : 999,991 + 1 = 999,992
Data process : 999,992 + 1 = 999,993
Data process : 999,993 + 1 = 999,994
Data process : 999,995 + 1 = 999,996
Success producer data : 999996
Success producer data : 999997
Success producer data : 999998
Success producer data : 999999
Data process : 999,994 + 1 = 999,995
Data process : 999,996 + 1 = 999,997
Data process : 999,997 + 1 = 999,998
Data process : 999,998 + 1 = 999,999
Data process : 999,999 + 1 = 1,000,000
Total time : 14202

由結果展現可見,邊生產、邊消費。

彩蛋

1 事件轉換類

package com.mm.demo.disruptor.translator;

import com.lmax.disruptor.EventTranslatorOneArg;
import com.mm.demo.disruptor.entity.Data;

public class DataEventTranslator implements EventTranslatorOneArg<Data, Long> {

    @Override
    public void translateTo(Data event, long sequence, Long arg0) {
        System.out.println(MessageFormat.format("DataEventTranslator arg0 = {0}, seq = {1}", arg0, sequence));
        event.setValue(arg0);
    }
}

2 消費者

2.1 消費者Demo1

消費者每次將event的結果加1。

package com.mm.demo.disruptor.handler;

import com.lmax.disruptor.EventHandler;
import com.mm.demo.disruptor.entity.Data;

import java.text.MessageFormat;

public class D1DataEventHandler implements EventHandler<Data> {

    @Override
    public void onEvent(Data event, long sequence, boolean endOfBatch) throws Exception {
        long result = event.getValue() + 1;
        Thread t = new Thread();
        String name = t.getName();
        System.out.println(MessageFormat.format("consumer "+name+": {0} + 1 = {1}", event.getValue(), result));
    }

}

這裏是使用的是EventHandler。也是使用WorkHandler,EventHandler和WorkHandler的區別是前者不須要池化,後者須要池化。

2.2 消費者Demo2

package com.mm.demo.disruptor.handler;

import com.lmax.disruptor.EventHandler;
import com.mm.demo.disruptor.entity.Data;

import java.text.MessageFormat;


public class D2DataEventHandler implements EventHandler<Data> {

    @Override
    public void onEvent(Data event, long sequence, boolean endOfBatch) throws Exception {
        long result = event.getValue() + 2;
        System.out.println(MessageFormat.format("consumer 2: {0} + 2 = {1}", event.getValue(), result));
    }
}

2.3 串行依次計算

Consumer1執行完成再執行Consumer2。

package com.mm.demo.disruptor.process;

import com.lmax.disruptor.dsl.Disruptor;
import com.mm.demo.disruptor.entity.Data;
import com.mm.demo.disruptor.handler.D1DataEventHandler;
import com.mm.demo.disruptor.handler.D2DataEventHandler;

/**
 * 串行依次計算
 * @DateT: 2020-01-07
 */
public class Serial {

    public static void serial(Disruptor<Data> disruptor) {
        disruptor.handleEventsWith(new D1DataEventHandler()).then(new D2DataEventHandler());
        disruptor.start();
    }
}

2.4 並行實時計算

Consumer1和Consumer2同時執行。

package com.mm.demo.disruptor.process;

import com.lmax.disruptor.dsl.Disruptor;
import com.mm.demo.disruptor.entity.Data;
import com.mm.demo.disruptor.handler.D1DataEventHandler;
import com.mm.demo.disruptor.handler.D2DataEventHandler;

/**
 * 並行執行
 * @DateT: 2020-01-07
 */
public class Parallel {

    public static void parallel(Disruptor<Data> dataDisruptor) {
        dataDisruptor.handleEventsWith(new D1DataEventHandler(), new D2DataEventHandler());
        dataDisruptor.start();
    }
}

2.5 測試類

package com.mm.demo.disruptor;

import com.lmax.disruptor.BlockingWaitStrategy;
import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.dsl.ProducerType;
import com.mm.demo.disruptor.entity.Data;
import com.mm.demo.disruptor.handler.D1DataEventHandler;
import com.mm.demo.disruptor.process.Parallel;
import com.mm.demo.disruptor.process.Serial;
import com.mm.demo.disruptor.translator.DataEventTranslator;

import javax.swing.plaf.synth.SynthTextAreaUI;
import java.nio.ByteBuffer;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadFactory;


public class Main {

    private static final int BUFFER = 1024 * 1024;

    public static void main(String[] args) {

        DataFactory factory = new DataFactory();

        Disruptor<Data> disruptor = new Disruptor<Data>(factory, BUFFER, Executors.defaultThreadFactory(), ProducerType.MULTI, new BlockingWaitStrategy());

      
        Serial.serial(disruptor);
//        Parallel.parallel(disruptor);

        RingBuffer<Data> ringBuffer = disruptor.getRingBuffer();
        for (int i = 0; i < 2; i++) {
            ringBuffer.publishEvent(new DataEventTranslator(), (long)i);
        }
        disruptor.shutdown();
    }
}

總結

上邊只演示了串行和並行的方式,其實仍是經過組合的方式建立不的計算處理方式(須要建立多個事件處理器EventHandler)。

補充等待策略

  • BlockingWaitStrategy:最低效的策略,可是對cpu的消耗是最小的,在各類不一樣部署環境中能提供更加一致的性能表現。
  • SleepingWaitStrategy:性能和BlockingWaitStrategy差很少少,cpu消耗也相似,可是其對生產者線程的影響最小,適合用於異步處理數據的場景。
  • YieldingWaitStrategy:性能是最好的,適用於低延遲的場景。在要求極高性能且事件處理線程數小於cpu處理核數時推薦使用此策略。
  • BusySpinWaitStrategy:低延遲,可是對cpu資源的佔用較多。
  • PhasedBackoffWaitStrategy:上邊幾種策略的綜合體,延遲大,可是佔用cpu資源較少。

參考

本文參考了Disruptor源碼以及github中的部分說明。

Demo源碼地址

github


  • 寫做不易,轉載請註明出處,喜歡的小夥伴能夠關注公衆號查看更多喜歡的文章。
  • 聯繫方式:4272231@163.com
  • QQ:95472323
  • 微信:ffj2000
相關文章
相關標籤/搜索