csa Round #66 (Div. 2 only)

csa66c++

Risk Rolls

Time limit: 1000 ms
Memory limit: 256 MB

 

Alena and Boris are playing Risk today. We'll call an outcome the sum of values on the faces of 111 or more rolled dice. Alena has NNN possible outcomes whilst Boris has MMM. In turns, each one of them will choose their best possible available outcome and play it. If Alena's outcome is strictly greater than Boris's, then Alena wins; otherwise Boris wins. Whenever one of them runs out of outcomes, the game ends. web

In how many turns does Alena win? What about Boris?ide

Standard input

The first line contains two integers NNN and MMM. ui

The second contains NNN integers, Alena's possible outcomes. this

The third line contains MMM integers, Boris's possible outcomes. spa

Standard output

Print two integers AAA and BBB on the first line of the output; AAA represents the number of turns won by Alena and BBB the number of turns won by Boris. code

Constraints and notes

  • 1≤N,M≤101 \leq N, M \leq 101N,M10
  • 1≤v≤241 \leq v \leq 241v24, where vvv is a possible outcome value
Input Output Explanation
1 3
24
1 2 3
1 0

In the first turn, Alena will play 242424, which will beat Boris's 333orm

3 1
2 1 3
24
0 1

This is the first sample with reversed outcomes for Alena and Boris.blog

2 2
10 1
5 5
1 1
 
4 3
3 4 5 24
9 9 9
1 2

In the first turn Alena will beat Boris because she will play 242424. 排序

3 3
8 9 10
10 8 8
1 2

In the first turn they will play 101010 against 101010 and Boris will win. On the second turn they will play 999 versus 888 and Alena will win. The third turn is also won by Boris.

直接作就行了,排序,注意有個strictly就是大於

#include <bits/stdc++.h>
using namespace std; int a[15],b[15]; int cmp(int a,int b) { return a>b; } int main() { int n,m; cin>>n>>m; int mi=min(n,m); for(int i=0;i<n;i++) cin>>a[i]; for(int i=0;i<m;i++) cin>>b[i]; sort(a,a+n,cmp); sort(b,b+n,cmp); int af=0,bf=0; for(int i=0;i<mi;i++) if(a[i]>b[i])af++; else bf++; cout<<af<<" "<<bf; return 0; }

Processing Discounts

Time limit: 1000 ms
Memory limit: 256 MB

 

You've just placed an order of XXX USD on an online shopping website. The website has NNN special discounts: if you make a purchase of at least AiA_iAi​​ USD, you get back BiB_iBi​​ USD. It may be advantageous to increase your order bill just so you would be eligible of certain discount offers.

What's the minimum amount of USD that you have to pay in the end, after processing the discounts?

Standard input

The first line contains two integers, NNN and XXX.

The next NNN lines contain a pair of integers, AiA_iAi​​ and BiB_iBi​​.

Standard output

Print the answer on the first line.

Constraints and notes

  • 1≤N≤1051 \leq N \leq 10^51N105​​
  • 1≤X,Ai,Bi≤1061\leq X, A_i, B_i \leq 10^61X,Ai​​,Bi​​106​​
  • The online shopping website will never become in debt to you, i.e. the discount offers are chosen in such a way that you'd never reach a negative amount of payment.
Input Output Explanation
3 99
50 5
75 10
100 5
80

We're eligible for the first two discount offers, so we get 5+10=155 + 10 = 155+10=15 USD back. This means that in the end we'll pay 99−15=8499 - 15 = 849915=84 USD.

If we increase our order up to 100100100 USD, we'll be eligible for the third offer as well and we'll pay only 100−5−10−5=80100 - 5 - 10 - 5 = 801005105=80 USD.

5 50
10 1
20 2
30 3
30 3
100 10
41

We're eligible for all the discount offers besides the last one. If we were to increase our payment in order to get the last offer, we would end up with 100−10−3−3−2−1=81100 - 10 - 3 - 3 - 2 - 1 = 81100103321=81 USD.

It's better to only consider the first 333, we end up spending 50−3−3−2−1=4150 - 3 - 3 - 2 - 1 = 41503321=41 USD.

1 10
100 95
5
 
1 200
100 95
105
 
 
B就是一個優惠券的問題,排下序,找到付款最小值就好了
#include<bits/stdc++.h>
using namespace std; int n,x; const int N=1e5+5; pair<int,int> a[N]; int main() { scanf("%d%d",&n,&x); for(int i=0; i<n; i++) scanf("%d%d",&a[i].first,&a[i].second); sort(a,a+n); int sum=x, s=0; for(int i=0; i<n; i++) s+=a[i].second,sum=min(sum,max(a[i].first,x)-s); printf("%d\n",sum); return 0; }

 

 

Counting Quacks

Time limit:  1000 ms
Memory limit:  256 MB

 

There are NN ducks on a lake. Every duck ii quacks periodically, once every X_iXi​​ moments of time; i.e. it quacks for the first time at the X_i^{\text{th}}Xith​​ moment of time, it quacks for the second time at the {2 * X_i}^{\text{th}}2Xi​​th​​ moment and so on...

Alex is sitting near this lake and he asks himself:

  • What's the maximum number of quacks i'll hear at the same moment of time?
  • How many times i'll hear this many quacks throughout my staying at the lake?

Alex isn't feeling so contemplative today, so he's leaving the lake after TT moments of time. After he leaves he won't be able to hear any more quacks.

Standard input

The first line contains two integers, NN and TT.

The next line contains NN integers representing XX.

Standard output

The first line contains two integers separated by space, as described in the statement.

Constraints and notes

  • 1 \leq N \leq 10^51N105​​ 
  • 1 \leq T \leq 10^61T106​​ 
  • 1 \leq X_i \leq 10^61Xi​​106​​ for each 1 \leq i \leq N1i
  • Alex comes at the lake at the moment of time 11.
Input Output
3 6
2 2 3
3 1
3 5
2 2 3
2 2
6 10
1 2 3 4 5 6
4 1

C當時太腦殘了,沒想到正確的作法,甚至想着去維護這些數,可是T不大啊,直接用埃篩的思想處理下就好了,複雜度O(T+TogT)

#include<bits/stdc++.h>
using namespace std; const int N=1e6+5; int n,T,a[N],M[N]; int main() { scanf("%d%d",&n,&T); for(int i=0,x; i<n; i++) scanf("%d",&x),++M[x]; for(int i=1; i<=T; i++) { if(!M[i])continue; for(int j=i; j<=T; j+=i)a[j]+=M[i]; } int ans=0,cnt=0; for(int i=1; i<=T; i++) if(a[i]>ans)ans=a[i],cnt=1; else if(a[i]==ans) cnt++; printf("%d %d\n",ans,cnt); return 0; }

 

Flipping Matrix

Time limit:  1000 ms
Memory limit:  256 MB

 

You are given a binary matrix AA of size N \times NN×N. You are allowed to perform the following two operations:

  • Take two rows and swap them. If we want to swap rows xx and yy, we'll encode this operation as R x y.
  • Take two columns and swap them. If we want to swap columns xx and yy, we'll encode this operation as C x y.

Is it possible to obtain only values of 11 on the main diagonal of AA by performing a sequence of at most NN operations? If so, print the required operations.

Standard input

The first line contains NN.

The next NN lines contain NN binary values separated by spaces, representing AA.

Standard output

If there is no solution, print -11.

Otherwise, print every operation on a separated line.

Constraints and notes

  • 2 \leq N \leq 10^32N103​​ 
  • 0 \leq A_{i, j} \leq 10Ai,j​​1 for every 1 \leq i, j \leq N1i,jN
Input Output
3
0 0 1
0 1 0
1 0 0
C 1 3
4
1 1 0 0
0 1 0 1
1 1 0 0
0 0 0 1
-1
5
0 1 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 1 1 0
1 0 0 0 0
R 1 5
C 2 3

是個特判題,雖然說能夠交換行和列,可是其實交換哪一個都同樣,dfs遍歷看看有沒有機會獲得對角線全是1,須要優秀的暴力,由於n仍是很大的

#include<bits/stdc++.h>
using namespace std; const int N=1005; int a[N][N],F[N],n,y[N]; int dfs(int x) { for(int i=1; i<=n; i++) if(a[x][i]&&!y[i]) { y[i]=1; if(!F[i]||dfs(F[i])) { F[i]=x; return 1; } } return 0; } int la() { for(int i=1; i<=n; i++) { memset(y,0,sizeof y); if(!dfs(i))return 0; } return 1; } int main() { scanf("%d",&n); for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) scanf("%d",a[i]+j); if(!la())puts("-1"); else { for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(F[j]==i) { if(j!=i)swap(F[j],F[i]),printf("C %d %d\n",i,j); break; } } return 0; }
相關文章
相關標籤/搜索