Redis使用pipeLine批量獲取數據加快接口響應速度

1、背景java

  • 需求:

    redis經過tcp來對外提供服務,client經過socket鏈接發起請求,每一個請求在命令發出後會阻塞等待redis服務器進行處理,處理完畢後將結果返回給client。web

    其實和一個http的服務器相似,一問一答,請求一次給一次響應。而這個過程在排除掉redis服務自己作複雜操做時的耗時的話,能夠看到最耗時的就是這個網絡傳輸過程。每個命令都對應了發送、接收兩個網絡傳輸,假如一個流程須要0.1秒,那麼一秒最多隻能處理10個請求,將嚴重製約redis的性能。redis

    在不少場景下,咱們要完成一個業務,可能會對redis作連續的多個操做,譬如庫存減1、訂單加1、餘額扣減等等,這有不少個步驟是須要依次連續執行的。spring

  • 潛在隱患:這樣的場景,網絡傳輸的耗時將是限制redis處理量的主要瓶頸。循環key,獲取value,可能會形成鏈接池的鏈接數增多,鏈接的建立和摧毀,消耗性能
  • 解決方法:

    能夠引入pipeline了,pipeline管道就是解決執行大量命令時、會產生大量同窗次數而致使延遲的技術。緩存

    其實原理很簡單,pipeline就是把全部的命令一次發過去,避免頻繁的發送、接收帶來的網絡開銷,redis在打包接收到一堆命令後,依次執行,而後把結果再打包返回給客戶端。服務器

    根據項目中的緩存數據結構的實際狀況,數據結構爲string類型的,使用RedisTemplate的multiGet方法;數據結構爲hash,使用Pipeline(管道),組合命令,批量操做redis。

2、操做網絡

  1. RedisTemplate的multiGet的操做數據結構

    • 針對數據結構爲String類型app

    • 示例代碼socket

List<String> keys = new ArrayList<>();
for (Book e : booklist) {
   String key = generateKey.getKey(e);
   keys.add(key);
}
List<Serializable> resultStr = template.opsForValue().multiGet(

    2.RedisTemplate的Pipeline使用

    爲何Pipelining這麼快?    

    先看看原來的多條命令,是如何執行的:    

    Redis Client->>Redis Server: 發送第1個命令

    Redis Server->>Redis Client: 響應第1個命令

    Redis Client->>Redis Server: 發送第2個命令

    Redis Server->>Redis Client: 響應第2個命令

    Redis Client->>Redis Server: 發送第n個命令

    Redis Server->>Redis Client: 響應第n個命令

 Pipeling機制是怎樣的呢:
    Redis Client->>Redis Server: 發送第1個命令(緩存在Redis Client,未即時發送)
    Redis Client->>Redis Server: 發送第2個命令(緩存在Redis Client,未即時發送)
    Redis Client->>Redis Server: 發送第n個命令(緩存在Redis Client,未即時發送)
    Redis Client->>Redis Server: 發送累積的命令
    Redis Server->>Redis Client: 響應第一、二、n個命令

  • 示例代碼

package cn.chinotan.controller;

import cn.chinotan.service.RedisService;
import lombok.extern.java.Log;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
 * @program: test
 * @description: redis批量數據測試
 * @author: xingcheng
 * @create: 2019-03-16 16:26
 **/
@RestController
@RequestMapping("/redisBatch")
@Log
public class RedisBatchController {

    @Autowired
    StringRedisTemplate redisTemplate;
    
    @Autowired
    Map<String, RedisService> redisServiceMap;

    /**
     * VALUE緩存時間 3分鐘
     */
    public static final Integer VALUE_TIME = 1;

    /**
     * 測試列表長度
     */
    public static final Integer SIZE = 100000;

    @GetMapping(value = "/test/{model}")
    public Object hello(@PathVariable("model") String model) {
        List<Map<String, String>> saveList = new ArrayList<>(SIZE);
        List<String> keyList = new ArrayList<>(SIZE);
        for (int i = 0; i < SIZE; i++) {
            Map<String, String> objectObjectMap = new HashMap<>();
            String key = String.valueOf(i);
            objectObjectMap.put("key", key);
            StringBuilder sb = new StringBuilder();
            objectObjectMap.put("value", sb.append("value").append(i).toString());
            saveList.add(objectObjectMap);
            // 記錄所有key
            keyList.add(key);
        }
        
        // 獲取對應的實現
        RedisService redisService = redisServiceMap.get(model);
        
        long saveStart = System.currentTimeMillis();
        redisService.batchInsert(saveList, TimeUnit.MINUTES, VALUE_TIME);
        long saveEnd = System.currentTimeMillis();
        log.info("插入耗時:" + (saveEnd - saveStart) + " ms");
        // 批量獲取
        long getStart = System.currentTimeMillis();
        List<String> valueList = redisService.batchGet(keyList);
        long getEnd = System.currentTimeMillis();
        log.info("獲取耗時:" + (getEnd - getStart) + " ms");
        return valueList;
    }
}
package cn.chinotan.controller;

import cn.chinotan.service.RedisService;
import lombok.extern.java.Log;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
 * @program: test
 * @description: redis批量數據測試
 * @author: xingcheng
 * @create: 2019-03-16 16:26
 **/
@RestController
@RequestMapping("/redisBatch")
@Log
public class RedisBatchController {

    @Autowired
    StringRedisTemplate redisTemplate;
    
    @Autowired
    Map<String, RedisService> redisServiceMap;

    /**
     * VALUE緩存時間 3分鐘
     */
    public static final Integer VALUE_TIME = 1;

    /**
     * 測試列表長度
     */
    public static final Integer SIZE = 100000;

    @GetMapping(value = "/test/{model}")
    public Object hello(@PathVariable("model") String model) {
        List<Map<String, String>> saveList = new ArrayList<>(SIZE);
        List<String> keyList = new ArrayList<>(SIZE);
        for (int i = 0; i < SIZE; i++) {
            Map<String, String> objectObjectMap = new HashMap<>();
            String key = String.valueOf(i);
            objectObjectMap.put("key", key);
            StringBuilder sb = new StringBuilder();
            objectObjectMap.put("value", sb.append("value").append(i).toString());
            saveList.add(objectObjectMap);
            // 記錄所有key
            keyList.add(key);
        }
        
        // 獲取對應的實現
        RedisService redisService = redisServiceMap.get(model);
        
        long saveStart = System.currentTimeMillis();
        redisService.batchInsert(saveList, TimeUnit.MINUTES, VALUE_TIME);
        long saveEnd = System.currentTimeMillis();
        log.info("插入耗時:" + (saveEnd - saveStart) + " ms");
        // 批量獲取
        long getStart = System.currentTimeMillis();
        List<String> valueList = redisService.batchGet(keyList);
        long getEnd = System.currentTimeMillis();
        log.info("獲取耗時:" + (getEnd - getStart) + " ms");
        return valueList;
    }
}
package cn.chinotan.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.connection.StringRedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisOperations;
import org.springframework.data.redis.core.SessionCallback;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Service;

import java.util.*;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;

/**
 * @program: test
 * @description: redis管道操做
 * @author: xingcheng
 * @create: 2019-03-16 16:47
 **/
@Service("pipe")
public class RedisPipelineService implements RedisService {

    @Autowired
    StringRedisTemplate redisTemplate;

    @Override
    public void batchInsert(List<Map<String, String>> saveList, TimeUnit unit, int timeout) {
        /* 插入多條數據 */
        redisTemplate.executePipelined(new SessionCallback<Object>() {
            @Override
            public <K, V> Object execute(RedisOperations<K, V> redisOperations) throws DataAccessException {
                for (Map<String, String> needSave : saveList) {
                    redisTemplate.opsForValue().set(needSave.get("key"), needSave.get("value"), timeout,unit);
                }
                return null;
            }
        });
    }

    @Override
    public List<String> batchGet(List<String> keyList) {
        /* 批量獲取多條數據 */
        List<Object> objects = redisTemplate.executePipelined(new RedisCallback<String>() {
            @Override
            public String doInRedis(RedisConnection redisConnection) throws DataAccessException {
                StringRedisConnection stringRedisConnection = (StringRedisConnection) redisConnection;
                for (String key : keyList) {
                    stringRedisConnection.get(key);
                }
                return null;
            }
        });

        List<String> collect = objects.stream().map(val -> String.valueOf(val)).collect(Collectors.toList());

        return collect;
    }
}
package cn.chinotan.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Service;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
 * @program: test
 * @description: redis普通遍歷操做
 * @author: xingcheng
 * @create: 2019-03-16 16:47
 **/
@Service("generic")
public class RedisGenericService implements RedisService {

    @Autowired
    StringRedisTemplate redisTemplate;
    
    @Override
    public void batchInsert(List<Map<String, String>> saveList, TimeUnit unit, int timeout) {
        for (Map<String, String> needSave : saveList) {
            redisTemplate.opsForValue().set(needSave.get("key"), needSave.get("value"), timeout,unit);
        }
    }

    @Override
    public List<String> batchGet(List<String> keyList) {
        List<String> values = new ArrayList<>(keyList.size());
        for (String key : keyList) {
            String value = redisTemplate.opsForValue().get(key);
            values.add(value);
        }
        return values;
    }
}

測試結果:

 

 

 

 

能夠看到性能提高了20倍之多

基於其特性,它有兩個明顯的侷限性:

  • 鑑於Pipepining發送命令的特性,Redis服務器是以隊列來存儲準備執行的命令,而隊列是存放在有限的內存中的,因此不宜一次性發送過多的命令。若是須要大量的命令,可分批進行,效率不會相差太遠滴,總好過內存溢出嘛~~
  • 因爲pipeline的原理是收集需執行的命令,到最後才一次性執行。因此沒法在中途當即查得數據的結果(需待pipelining完畢後才能查得結果),這樣會使得沒法當即查得數據進行條件判斷(好比判斷是非繼續插入記錄)。
相關文章
相關標籤/搜索