題目:app
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
示例:this
[ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11). Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
題目解析:spa
1.此題是等腰三角形,上下之間的關係簡化爲上下相鄰的三個數,index相鄰,大小關係是在下方二選一+上方的數值,必然正確。 根據此思路,能夠top-bottom,或者bottom-top,因爲能夠簡化,因此動態規劃方法。 2. 採用bottom-top方法,最後簡化爲1個值,因此左側值放置兩值中的小值。
代碼:code
普通代碼,較慢: class Solution_: def minimumTotal(self, triangle): """ :type triangle: List[List[int]] :rtype: int """ all_paths=[] cur_path=[triangle[0][0]] # cur_path=[] cur_index=[0,0] self.bfs(all_paths,cur_path,cur_index,triangle) print(all_paths) sums=[sum(elem) for elem in all_paths] return min(sums) def bfs(self,all_paths,cur_path,cur_index,triangle): x_cur=cur_index[0] # cur_row=triangle[x_cur] x_threshold=len(triangle) y_cur=cur_index[1] x_next=x_cur+1 y_next=[] if x_next<x_threshold: next_row = triangle[x_cur + 1] y_threshold = len(next_row) # y_next.append(y_cur) # if y_cur-1>=0: y_next.append(y_cur) if y_cur+1<y_threshold: y_next.append(y_cur+1) for elem in y_next: cur_path_pre=cur_path+[triangle[x_next][elem]] self.bfs(all_paths,cur_path_pre,[x_next,elem],triangle) else: all_paths.append(cur_path) 動態規劃,簡練: class Solution(object): def minimumTotal(self, triangle): dp=triangle[-1][:] # print(dp) for i in range(len(triangle)-2,-1,-1): for j in range(i+1): # print(i,j) dp[j]=min(dp[j],dp[j+1])+triangle[i][j] # dp=dp[:i+1] return dp[0]