在tensorflow上進行機器學習的「Hello World」:MNIST 手寫識別

安裝好了tensorflow(TensorFlow 安裝筆記),接下來就在他的官網指導下進行Mnist手寫數字識別實驗。node

softmax 實驗過程

進入tfgpu虛擬環境後,首先進入目錄:/anaconda2/envs/tfgpu/lib/python2.7/site-packages/tensorflow/examples/tutorials/mnist/,而後進入IPython交互終端。python

In [4]: from tensorflow.examples.tutorials.mnist import input_data
   ...: mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
   ...: 
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting MNIST_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

In [5]: import tensorflow as tf

In [6]: x = tf.placeholder(tf.float32, [None, 784])

In [7]: W = tf.Variable(tf.zeros([784, 10]))
   ...: b = tf.Variable(tf.zeros([10]))
   ...: 

In [8]: y = tf.nn.softmax(tf.matmul(x, W) + b)

In [9]: y_ = tf.placeholder(tf.float32, [None, 10])

In [10]: cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

In [11]: train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

In [12]: init = tf.initialize_all_variables()

In [13]: sess = tf.Session()
    ...: sess.run(init)
    ...: 
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: GeForce 940M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:08:00.0
Total memory: 1023.88MiB
Free memory: 997.54MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:839] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 940M, pci bus id: 0000:08:00.0)

In [14]: for i in range(1000):
    ...:   batch_xs, batch_ys = mnist.train.next_batch(100)
    ...:   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    ...:   

In [15]: correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

In [16]: accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    ...: 

In [17]: print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
0.9186

softmax實驗說明

In [4]:主要是下載數據

In [6]:意思是先分配輸入x,None即輸入圖片數量稍後運行時肯定,784即28*28,把一張28*28的圖片拉長成爲一維向量,保證每張圖片拉長方式相同便可

In [7]:分配權重w和偏置b

In [8]:實現softmax模型,得到輸出判斷值y

In [9]: 分配實際判斷值y_

In [10]:得到交叉熵形式的代價函數

In [11]:每一步使用0.5的學習率(步長)來進行梯度降低算法

In [12]:初始化全部變量

In [13]:開啓一個會話,啓動模型

In [14]:進行1000次隨機梯度降低算法

In [15]:比較輸出判斷值y和真實判斷值y_

In [16]:得到準確率

In [17]:得到測試集上的準確率:91.86%

神經網絡實驗過程

In [1]: from tensorflow.examples.tutorials.mnist import input_data
   ...: mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
   ...: 
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

In [2]: import tensorflow as tf
   ...: sess = tf.InteractiveSession()
   ...: 
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: GeForce 940M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:08:00.0
Total memory: 1023.88MiB
Free memory: 997.54MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:839] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 940M, pci bus id: 0000:08:00.0)

In [3]: def weight_variable(shape):
   ...:   initial = tf.truncated_normal(shape, stddev=0.1)
   ...:   return tf.Variable(initial)
   ...: 
   ...: def bias_variable(shape):
   ...:   initial = tf.constant(0.1, shape=shape)
   ...:   return tf.Variable(initial)
   ...: 

In [4]: 

In [4]: def conv2d(x, W):
   ...:   return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
   ...: 
   ...: def max_pool_2x2(x):
   ...:   return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
   ...:                         strides=[1, 2, 2, 1], padding='SAME')
   ...: 

In [5]: W_conv1 = weight_variable([5, 5, 1, 32])
   ...: b_conv1 = bias_variable([32])
   ...: 

In [6]: 

In [7]: x = tf.placeholder(tf.float32, shape=[None, 784])
   ...: y_ = tf.placeholder(tf.float32, shape=[None, 10])
   ...: 

In [8]: x_image = tf.reshape(x, [-1,28,28,1])
   ...: 

In [9]: h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
   ...: h_pool1 = max_pool_2x2(h_conv1)
   ...: 

In [10]: W_conv2 = weight_variable([5, 5, 32, 64])
    ...: b_conv2 = bias_variable([64])
    ...: 
    ...: h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    ...: h_pool2 = max_pool_2x2(h_conv2)
    ...: 

In [11]: W_fc1 = weight_variable([7 * 7 * 64, 1024])
    ...: b_fc1 = bias_variable([1024])
    ...: 
    ...: h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    ...: h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    ...: 

In [12]: keep_prob = tf.placeholder(tf.float32)
    ...: h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    ...: 

In [13]: W_fc2 = weight_variable([1024, 10])
    ...: b_fc2 = bias_variable([10])
    ...: 
    ...: y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    ...: 

In [14]: cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
    ...: train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    ...: correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    ...: accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    ...: sess.run(tf.initialize_all_variables())
    ...: for i in range(2000):
    ...:   batch = mnist.train.next_batch(50)
    ...:   if i%100 == 0:
    ...:     train_accuracy = accuracy.eval(feed_dict={
    ...:         x:batch[0], y_: batch[1], keep_prob: 1.0})
    ...:     print("step %d, training accuracy %g"%(i, train_accuracy))
    ...:   train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    ...: 
    ...: print("test accuracy %g"%accuracy.eval(feed_dict={
    ...:     x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    ...: 
step 0, training accuracy 0.04
step 100, training accuracy 0.86
step 200, training accuracy 0.92
step 300, training accuracy 0.88
step 400, training accuracy 0.96
step 500, training accuracy 0.9
step 600, training accuracy 1
step 700, training accuracy 0.98
step 800, training accuracy 0.92
step 900, training accuracy 0.98
step 1000, training accuracy 0.94
step 1100, training accuracy 0.96
step 1200, training accuracy 1
step 1300, training accuracy 0.98
step 1400, training accuracy 0.94
step 1500, training accuracy 0.96
step 1600, training accuracy 1
step 1700, training accuracy 0.92
step 1800, training accuracy 0.92
step 1900, training accuracy 0.96
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (256):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (512):     Total Chunks: 1, Chunks in use: 0 768B allocated for chunks. 6.4KiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (1024):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
...
...
...
...
Limit:                   836280320
InUse:                    83845120
MaxInUse:                117678336
NumAllocs:                  246915
MaxAllocSize:             45883392

W tensorflow/core/common_runtime/bfc_allocator.cc:270] *****_******________________________________________________________________________________________
W tensorflow/core/common_runtime/bfc_allocator.cc:271] Ran out of memory trying to allocate 957.03MiB.  See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:936] Resource exhausted: OOM when allocating tensor with shape[10000,28,28,32]
E tensorflow/core/client/tensor_c_api.cc:485] OOM when allocating tensor with shape[10000,28,28,32]
     [[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Variable/read)]]


In [20]: cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
    ...: train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    ...: correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    ...: accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    ...: sess.run(tf.initialize_all_variables())
    ...: for i in range(20000):
    ...:   batch = mnist.train.next_batch(50)
    ...:   if i%100 == 0:
    ...:     train_accuracy = accuracy.eval(feed_dict={
    ...:         x:batch[0], y_: batch[1], keep_prob: 1.0})
    ...:     print("step %d, training accuracy %g"%(i, train_accuracy))
    ...:   train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    ...: 
    ...: print("test accuracy %g"%accuracy.eval(feed_dict={
    ...:     x: mnist.test.images[0:200,:], y_: mnist.test.labels[0:200,:], keep_prob: 1.0}))
    ...: 
step 0, training accuracy 0.12
step 100, training accuracy 0.78
step 200, training accuracy 0.88
step 300, training accuracy 0.96
step 400, training accuracy 0.9
step 500, training accuracy 0.96
step 600, training accuracy 0.94
step 700, training accuracy 0.92
step 800, training accuracy 0.92
step 900, training accuracy 0.96
step 1000, training accuracy 0.94
step 1100, training accuracy 0.98
step 1200, training accuracy 0.96
step 1300, training accuracy 1
step 1400, training accuracy 0.98
...
...
...
test accuracy 0.995

In [21]: cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
...: train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
...: correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
...: accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
...: sess.run(tf.initialize_all_variables())
...: for i in range(20000):
...:   batch = mnist.train.next_batch(50)
...:   if i%100 == 0:
...:     train_accuracy = accuracy.eval(feed_dict={
...:         x:batch[0], y_: batch[1], keep_prob: 1.0})
...:     print "step %d, training accuracy %g"%(i, train_accuracy)
...:   train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
...: 
...: print "test accuracy %g"%accuracy.eval(feed_dict={
...:     x: mnist.test.images[200:400,:], y_: mnist.test.labels[200:400,:], keep_prob: 1.0})
...:     
...: 
step 0, training accuracy 0.12
step 100, training accuracy 0.94
step 200, training accuracy 0.86
step 300, training accuracy 0.96
step 400, training accuracy 0.9
step 500, training accuracy 1
step 600, training accuracy 0.96
step 700, training accuracy 0.88
step 800, training accuracy 1
step 900, training accuracy 0.98
step 1000, training accuracy 0.96
step 1100, training accuracy 0.94
step 1200, training accuracy 0.96
step 1300, training accuracy 0.96
step 1400, training accuracy 0.94
step 1500, training accuracy 0.98
step 1600, training accuracy 0.96
step 1700, training accuracy 0.98
...
...
...
test accuracy 0.975

In [22]: for i in range(20000):
...:   batch = mnist.train.next_batch(50)
...:   if i%100 == 0:
...:     train_accuracy = accuracy.eval(feed_dict={
...:         x:batch[0], y_: batch[1], keep_prob: 1.0})
...:     print "step %d, training accuracy %g"%(i, train_accuracy)
...:   train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
...: 
...: print "test accuracy %g"%accuracy.eval(feed_dict={
...:     x: mnist.test.images[400:1000,:], y_: mnist.test.labels[400:1000,:], keep_prob: 1.0})
...: 
step 0, training accuracy 1
step 100, training accuracy 1
step 200, training accuracy 0.98
step 300, training accuracy 0.98
step 400, training accuracy 0.98
step 500, training accuracy 1
step 600, training accuracy 0.96
step 700, training accuracy 0.96
...
...
...
test accuracy  0.983333

神經網絡實驗說明

In [1]: 導入數據,即測試集和驗證集

In [2]: 引入 tensorflow 啓動InteractiveSession(比session更靈活)

In [3]: 定義兩個初始化w和b的函數,方便後續操做

In [4]: 定義卷積和池化函數,這裏卷積採用padding,使得輸入輸出圖像同樣大,池化採起2x2,那麼就是4格變一格

In [5]: 定義第一層卷積的w和b

In [7]: 分配輸入x和y_

In [8]: 修改x的shape

In [9]: 把x_image和w進行卷積,加上b,而後應用ReLU激活函數,最後進行max-pooling

In [10]: 第二層卷積,和第一層卷積相似

In [11]: 全鏈接層

In [12]: 爲了減小過擬合,能夠在輸出層以前加入dropout。(可是本例子比較簡單,即便不加,影響也不大)

In [13]: 由一個softmax層來獲得輸出

In [14]: 定義代價函數,訓練步驟,用ADAM來進行優化,能夠看出,最後測試集太大了,我得顯存不夠    

In [20]: 只使用1~200個圖片做爲測試集,正確率是 0.995

In [21]: 只使用201~400個圖片做爲測試集,正確率是 0.975

In [22]: 只使用401~1000個圖片做爲測試集,正確率是 0.983333

這個CNN的結構以下圖所示:算法

圖片描述

修改CNN

如今嘗試修改這個CNN結構,增長特徵數量以期得到更好的效果,修改後的CNN結構如圖:segmentfault

圖片描述

實驗過程以下:api

In [23]:     def weight_variable(shape):
    ...:       initial = tf.truncated_normal(shape, stddev=0.1)
    ...:       return tf.Variable(initial)
    ...:     
    ...:     def bias_variable(shape):
    ...:       initial = tf.constant(0.1, shape=shape)
    ...:       return tf.Variable(initial)
    ...:     def conv2d(x, W):
    ...:       return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    ...:     def max_pool_2x2(x):
    ...:       return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
    ...:                             strides=[1, 2, 2, 1], padding='SAME')
    ...:     W_conv1 = weight_variable([5, 5, 1, 64])
    ...:     b_conv1 = bias_variable([64])
    ...:     h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    ...:     h_pool1 = max_pool_2x2(h_conv1)
    ...:     W_conv2 = weight_variable([5, 5, 64, 128])
    ...:     b_conv2 = bias_variable([128])
    ...:     
    ...:     h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    ...:     h_pool2 = max_pool_2x2(h_conv2)
    ...:     W_fc1 = weight_variable([7 * 7 * 128, 1024])
    ...:     b_fc1 = bias_variable([1024])
    ...:     
    ...:     h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*128])
    ...:     h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    ...:     keep_prob = tf.placeholder("float")
    ...:     h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    ...:     W_fc2 = weight_variable([1024, 10])
    ...:     b_fc2 = bias_variable([10])
    ...:     
    ...:     y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    ...:     cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    ...:     train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    ...:     correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    ...:     accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    ...:     sess.run(tf.initialize_all_variables())
    ...:     for i in range(20000):
    ...:       batch = mnist.train.next_batch(50)
    ...:       if i%100 == 0:
    ...:         train_accuracy = accuracy.eval(feed_dict={
    ...:             x:batch[0], y_: batch[1], keep_prob: 1.0})
    ...:         print "step %d, training accuracy %g"%(i, train_accuracy)
    ...:       train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    ...:     
    ...:     print "test accuracy %g"%accuracy.eval(feed_dict={
    ...:         x: mnist.test.images[0:200,:], y_: mnist.test.labels[0:200,:], keep_prob: 1.0})
    ...: 
    ...
    ...
    ...
    test accuracy 1
In [24]: for i in range(20000):
    ...:    batch = mnist.train.next_batch(50)
    ...:    if i%100 == 0:
    ...:       train_accuracy = accuracy.eval(feed_dict={
    ...:          x:batch[0], y_: batch[1], keep_prob: 1.0})
    ...:       print "step %d, training accuracy %g"%(i, train_accuracy)
    ...:    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    ...: 
    ...: print "test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images[200:400,:], y_: mnist.test.labels[200:400,:], keep_prob: 1.0})
    ...: 
    ...
    ...
    ...
    test accuracy 0.975
In [25]: for i in range(20000):
    ...:    batch = mnist.train.next_batch(50)
    ...:    if i%100 == 0:
    ...:       train_accuracy = accuracy.eval(feed_dict={
    ...:          x:batch[0], y_: batch[1], keep_prob: 1.0})
    ...:       print "step %d, training accuracy %g"%(i, train_accuracy)
    ...:    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    ...: 
    ...: print "test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images[400:1000,:], y_: mnist.test.labels[400:1000,:], keep_prob: 1.0})
    ...: 
    ...
    ...
    ...
    W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 717.77MiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
In [26]: print "test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images[400:600,:], y_: mnist.test.labels[400:600,:], keep_prob: 1.0})
    ...:
    test accuracy 0.985
In [28]: print "test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images[600:800,:], y_: mnist.test.labels[600:800,:], keep_prob: 1.0})
    ...: 
    ...: 
    ...: 
test accuracy 0.985
In [29]: print "test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images[800:1000,:], y_: mnist.test.labels[800:1000,:], keep_prob: 1.0})
    ...: 
    ...: 
test accuracy 0.995

修改前的平均準確率是:網絡

( 0.995*2 + 0.975*2 + 0.9833*6 )/ 10 = 0.98398

修改後的平均準確率是:session

(1*2 + 0.975*2+ 0.985*4 + 0.995*2)/ 10 = 0.98800

能夠看出增長特徵事後,準確率提升了,可是內存消耗也變大了(400~1000的圖片驗證出現了OOM錯誤),並且實驗過程當中也感覺到時間消耗更大,怎麼取捨就取決於具體需求和具體的硬件配置了。python2.7

相關文章
相關標籤/搜索