本系列文章是對 metalkit.org 上面MetalKit內容的全面翻譯和學習.c++
正如上次強調的那樣,在ARKit應用中共有三個層級:渲染
,追蹤
和場景理解
.上次咱們詳細分析瞭如何用Metal
在自定義view中實現渲染. ARKit
使用了視覺慣性里程計
來精確追蹤周圍的世界,並將相機傳感器數據和CoreMotion
數據結合起來.即便當咱們在運動時,也無需額外調校來保持畫面穩定.本文中,咱們關注場景理解-用平面檢測,點擊測試和光線估計來描述場景屬性的方法.ARKit
能分析相機中的場景,並找到相似地板那樣的水平面.首先,咱們須要啓用平面檢測功能(默認是off),只需在運行會話配置羊添加一行:github
override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)
let configuration = ARWorldTrackingConfiguration()
configuration.planeDetection = .horizontal
session.run(configuration)
}
複製代碼
注意:當前
API
版本下,只能檢測水平面swift
ARSessionObserver代理方法對處理會話錯誤,追蹤改變和打斷很是有用:session
func session(_ session: ARSession, didFailWithError error: Error) {}
func session(_ session: ARSession, cameraDidChangeTrackingState camera: ARCamera) {}
func session(_ session: ARSession, didOutputAudioSampleBuffer audioSampleBuffer: CMSampleBuffer) {}
func sessionWasInterrupted(_ session: ARSession) {}
func sessionInterruptionEnded(_ session: ARSession) {}
複製代碼
還有另外一些代理方法屬於ARSessionDelegate協議(屬於ARSessionObserver
擴展)能讓咱們處理錨點.在第一個裏面寫上print():ide
func session(_ session: ARSession, didAdd anchors: [ARAnchor]) {
print(anchors)
}
func session(_ session: ARSession, didRemove anchors: [ARAnchor]) {}
func session(_ session: ARSession, didUpdate anchors: [ARAnchor]) {}
func session(_ session: ARSession, didUpdate frame: ARFrame) {}
複製代碼
讓咱們進入到Renderer.swift裏面.首先,建立一些須要的類屬性.這些變量將幫助咱們建立並在屏幕上顯示一個調試用的平面:函數
var debugUniformBuffer: MTLBuffer!
var debugPipelineState: MTLRenderPipelineState!
var debugDepthState: MTLDepthStencilState!var debugMesh: MTKMesh!
var debugUniformBufferOffset: Int = 0
var debugUniformBufferAddress: UnsafeMutableRawPointer!
var debugInstanceCount: Int = 0
複製代碼
下一步,在**setupPipeline()**咱們建立緩衝器:post
debugUniformBuffer = device.makeBuffer(length: anchorUniformBufferSize, options: .storageModeShared)
複製代碼
咱們須要給咱們的平面建立新的頂點及片斷函數,還有新的渲染管線和深度模板狀態.在建立命令隊列的前面添加幾行:學習
let debugGeometryVertexFunction = defaultLibrary.makeFunction(name: "vertexDebugPlane")!
let debugGeometryFragmentFunction = defaultLibrary.makeFunction(name: "fragmentDebugPlane")!
anchorPipelineStateDescriptor.vertexFunction = debugGeometryVertexFunction
anchorPipelineStateDescriptor.fragmentFunction = debugGeometryFragmentFunction
do { try debugPipelineState = device.makeRenderPipelineState(descriptor: anchorPipelineStateDescriptor)
} catch let error { print(error) }
debugDepthState = device.makeDepthStencilState(descriptor: anchorDepthStateDescriptor)
複製代碼
下一步,在**setupAssets()**裏咱們須要建立一個新的Model I/O
平面網格,並用它建立Metal
網格.在函數的末尾添加幾行:測試
mdlMesh = MDLMesh(planeWithExtent: vector3(0.1, 0.1, 0.1), segments: vector2(1, 1), geometryType: .triangles, allocator: metalAllocator)
mdlMesh.vertexDescriptor = vertexDescriptor
do { try debugMesh = MTKMesh(mesh: mdlMesh, device: device)
} catch let error { print(error) }
複製代碼
下一步,在**updateBufferStates()**中咱們須要更新平面所在緩衝器的地址.添加下面幾行:
debugUniformBufferOffset = alignedInstanceUniformSize * uniformBufferIndex
debugUniformBufferAddress = debugUniformBuffer.contents().advanced(by: debugUniformBufferOffset)
複製代碼
下一步,在**updateAnchors()**中咱們須要更新變換矩陣和錨點數.在循環以前添加下面幾行:
let count = frame.anchors.filter{ $0.isKind(of: ARPlaneAnchor.self) }.count
debugInstanceCount = min(count, maxAnchorInstanceCount - (anchorInstanceCount - count))
複製代碼
而後,在循環中用下面幾行替換最後的三行:
if anchor.isKind(of: ARPlaneAnchor.self) {
let transform = anchor.transform * rotationMatrix(rotation: float3(0, 0, Float.pi/2))
let modelMatrix = simd_mul(transform, coordinateSpaceTransform)
let debugUniforms = debugUniformBufferAddress.assumingMemoryBound(to: InstanceUniforms.self).advanced(by: index)
debugUniforms.pointee.modelMatrix = modelMatrix
} else {
let modelMatrix = simd_mul(anchor.transform, coordinateSpaceTransform)
let anchorUniforms = anchorUniformBufferAddress.assumingMemoryBound(to: InstanceUniforms.self).advanced(by: index)
anchorUniforms.pointee.modelMatrix = modelMatrix
}
複製代碼
咱們必須將平面繞z軸旋轉90度,來讓它呈水平
狀態.注意,咱們使用了一個自定義方法,名爲rotationMatrix(),讓咱們來定義它.咱們在之前的文章中,當第一次介紹3D
矩陣時就見過了這個矩陣:
func rotationMatrix(rotation: float3) -> float4x4 {
var matrix: float4x4 = matrix_identity_float4x4
let x = rotation.x
let y = rotation.y
let z = rotation.z
matrix.columns.0.x = cos(y) * cos(z)
matrix.columns.0.y = cos(z) * sin(x) * sin(y) - cos(x) * sin(z)
matrix.columns.0.z = cos(x) * cos(z) * sin(y) + sin(x) * sin(z)
matrix.columns.1.x = cos(y) * sin(z)
matrix.columns.1.y = cos(x) * cos(z) + sin(x) * sin(y) * sin(z)
matrix.columns.1.z = -cos(z) * sin(x) + cos(x) * sin(y) * sin(z)
matrix.columns.2.x = -sin(y)
matrix.columns.2.y = cos(y) * sin(x)
matrix.columns.2.z = cos(x) * cos(y)
matrix.columns.3.w = 1.0
return matrix
}
複製代碼
下一步,在drawAnchorGeometry() 中咱們須要確保咱們在繪製以前至少有一個錨點.將第一行替換爲下面這行:
guard anchorInstanceCount - debugInstanceCount > 0 else { return }
複製代碼
下一步,讓咱們建立drawDebugGeometry() 函數來繪製咱們的平面.它很是相似於錨點繪製函數:
func drawDebugGeometry(renderEncoder: MTLRenderCommandEncoder) {
guard debugInstanceCount > 0 else { return }
renderEncoder.pushDebugGroup("DrawDebugPlanes")
renderEncoder.setCullMode(.back)
renderEncoder.setRenderPipelineState(debugPipelineState)
renderEncoder.setDepthStencilState(debugDepthState)
renderEncoder.setVertexBuffer(debugUniformBuffer, offset: debugUniformBufferOffset, index: 2)
renderEncoder.setVertexBuffer(sharedUniformBuffer, offset: sharedUniformBufferOffset, index: 3)
renderEncoder.setFragmentBuffer(sharedUniformBuffer, offset: sharedUniformBufferOffset, index: 3)
for bufferIndex in 0..<debugMesh.vertexBuffers.count {
let vertexBuffer = debugMesh.vertexBuffers[bufferIndex]
renderEncoder.setVertexBuffer(vertexBuffer.buffer, offset: vertexBuffer.offset, index:bufferIndex)
}
for submesh in debugMesh.submeshes {
renderEncoder.drawIndexedPrimitives(type: submesh.primitiveType, indexCount: submesh.indexCount, indexType: submesh.indexType, indexBuffer: submesh.indexBuffer.buffer, indexBufferOffset: submesh.indexBuffer.offset, instanceCount: debugInstanceCount)
}
renderEncoder.popDebugGroup()
}
複製代碼
在Renderer
中,還有一件須要完成,就是-在update() 中結束編碼前,調用這個函數:
drawDebugGeometry(renderEncoder: renderEncoder)
複製代碼
最後,讓咱們進入Shaders.metal文件中.咱們須要一個新的結構體,只包含從頂點描述符中傳遞過來的頂點位置:
typedef struct {
float3 position [[attribute(0)]];
} DebugVertex;
複製代碼
在頂點着色器中咱們用模型-視圖矩陣來更新頂點位置:
vertex float4 vertexDebugPlane(DebugVertex in [[ stage_in]],
constant SharedUniforms &sharedUniforms [[ buffer(3) ]],
constant InstanceUniforms *instanceUniforms [[ buffer(2) ]],
ushort vid [[vertex_id]],
ushort iid [[instance_id]]) {
float4 position = float4(in.position, 1.0);
float4x4 modelMatrix = instanceUniforms[iid].modelMatrix;
float4x4 modelViewMatrix = sharedUniforms.viewMatrix * modelMatrix;
float4 outPosition = sharedUniforms.projectionMatrix * modelViewMatrix * position;
return outPosition;
}
複製代碼
最後,在片斷着色器中,咱們給平面一個顯眼在顏色以便於在視圖中觀察到它:
fragment float4 fragmentDebugPlane() {
return float4(0.99, 0.42, 0.62, 1.0);
}
複製代碼
若是你運行應用,當檢測到平面時,你將看到添加了一個矩形,像這樣:
接下來要作的是當咱們檢測到更多或從先前檢測到的平面上移開時,更新/移除平面.別一個代理方法能幫助咱們實現這個效果.接下來,咱們將研究碰撞和物理效果.只是對之後的思考.
我要感謝Caroline爲本文構造了平面檢測.
源代碼source code已發佈在Github上.
下次見!