《從0到1學習Flink》—— 如何自定義 Data Source ?

前言

在 《從0到1學習Flink》—— Data Source 介紹 文章中,我給你們介紹了 Flink Data Source 以及簡短的介紹了一下自定義 Data Source,這篇文章更詳細的介紹下,並寫一個 demo 出來讓你們理解。java

Flink Kafka source

準備工做

咱們先來看下 Flink 從 Kafka topic 中獲取數據的 demo,首先你須要安裝好了 FLink 和 Kafka 。mysql

運行啓動 Flink、Zookepeer、Kafka,sql

好了,都啓動了!數據庫

maven 依賴

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
<!--flink java-->
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-java</artifactId>
	<version>${flink.version}</version>
	<scope>provided</scope>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
	<version>${flink.version}</version>
	<scope>provided</scope>
</dependency>
<!--日誌-->
<dependency>
	<groupId>org.slf4j</groupId>
	<artifactId>slf4j-log4j12</artifactId>
	<version>1.7.7</version>
	<scope>runtime</scope>
</dependency>
<dependency>
	<groupId>log4j</groupId>
	<artifactId>log4j</artifactId>
	<version>1.2.17</version>
	<scope>runtime</scope>
</dependency>
<!--flink kafka connector-->
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-connector-kafka-0.11_${scala.binary.version}</artifactId>
	<version>${flink.version}</version>
</dependency>
<!--alibaba fastjson-->
<dependency>
	<groupId>com.alibaba</groupId>
	<artifactId>fastjson</artifactId>
	<version>1.2.51</version>
</dependency>

測試發送數據到 kafka topic

實體類,Metric.javaapache

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
package com.zhisheng.flink.model;

import java.util.Map;

/**
 * Desc:
 * weixi: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class Metric {
    public String name;
    public long timestamp;
    public Map<String, Object> fields;
    public Map<String, String> tags;

    public Metric() {
    }

    public Metric(String name, long timestamp, Map<String, Object> fields, Map<String, String> tags) {
        this.name = name;
        this.timestamp = timestamp;
        this.fields = fields;
        this.tags = tags;
    }

    @Override
    public String toString() {
        return "Metric{" +
                "name='" + name + '\'' +
                ", timestamp='" + timestamp + '\'' +
                ", fields=" + fields +
                ", tags=" + tags +
                '}';
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public long getTimestamp() {
        return timestamp;
    }

    public void setTimestamp(long timestamp) {
        this.timestamp = timestamp;
    }

    public Map<String, Object> getFields() {
        return fields;
    }

    public void setFields(Map<String, Object> fields) {
        this.fields = fields;
    }

    public Map<String, String> getTags() {
        return tags;
    }

    public void setTags(Map<String, String> tags) {
        this.tags = tags;
    }
}

往 kafka 中寫數據工具類:KafkaUtils.javajson

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import com.alibaba.fastjson.JSON;
import com.zhisheng.flink.model.Metric;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

/**
 * 往kafka中寫數據
 * 可使用這個main函數進行測試一下
 * weixin: zhisheng_tian 
 * blog: http://www.54tianzhisheng.cn/
 */
public class KafkaUtils {
    public static final String broker_list = "localhost:9092";
    public static final String topic = "metric";  // kafka topic,Flink 程序中須要和這個統一 

    public static void writeToKafka() throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", broker_list);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //key 序列化
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //value 序列化
        KafkaProducer producer = new KafkaProducer<String, String>(props);

        Metric metric = new Metric();
        metric.setTimestamp(System.currentTimeMillis());
        metric.setName("mem");
        Map<String, String> tags = new HashMap<>();
        Map<String, Object> fields = new HashMap<>();

        tags.put("cluster", "zhisheng");
        tags.put("host_ip", "101.147.022.106");

        fields.put("used_percent", 90d);
        fields.put("max", 27244873d);
        fields.put("used", 17244873d);
        fields.put("init", 27244873d);

        metric.setTags(tags);
        metric.setFields(fields);

        ProducerRecord record = new ProducerRecord<String, String>(topic, null, null, JSON.toJSONString(metric));
        producer.send(record);
        System.out.println("發送數據: " + JSON.toJSONString(metric));

        producer.flush();
    }

    public static void main(String[] args) throws InterruptedException {
        while (true) {
            Thread.sleep(300);
            writeToKafka();
        }
    }
}

運行:bootstrap

若是出現如上圖標記的,即表明可以不斷的往 kafka 發送數據的。api

Flink 程序

Main.javasession

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
package com.zhisheng.flink;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;

import java.util.Properties;

/**
 * Desc:
 * weixi: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class Main {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("zookeeper.connect", "localhost:2181");
        props.put("group.id", "metric-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");  //key 反序列化
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("auto.offset.reset", "latest"); //value 反序列化

        DataStreamSource<String> dataStreamSource = env.addSource(new FlinkKafkaConsumer011<>(
                "metric",  //kafka topic
                new SimpleStringSchema(),  // String 序列化
                props)).setParallelism(1);

        dataStreamSource.print(); //把從 kafka 讀取到的數據打印在控制檯

        env.execute("Flink add data source");
    }
}

運行起來:maven

看到沒程序,Flink 程序控制臺可以源源不斷的打印數據呢。

自定義 Source

上面就是 Flink 自帶的 Kafka source,那麼接下來就模仿着寫一個從 MySQL 中讀取數據的 Source。

首先 pom.xml 中添加 MySQL 依賴

1
2
3
4
5
<dependency>
	<groupId>mysql</groupId>
	<artifactId>mysql-connector-java</artifactId>
	<version>5.1.34</version>
</dependency>

數據庫建表以下:

1
2
3
4
5
6
7
8
DROP TABLE IF EXISTS `student`;
CREATE TABLE `student` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(25) COLLATE utf8_bin DEFAULT NULL,
  `password` varchar(25) COLLATE utf8_bin DEFAULT NULL,
  `age` int(10) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

插入數據

1
2
INSERT INTO `student` VALUES ('1', 'zhisheng01', '123456', '18'), ('2', 'zhisheng02', '123', '17'), ('3', 'zhisheng03', '1234', '18'), ('4', 'zhisheng04', '12345', '16');
COMMIT;

新建實體類:Student.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
package com.zhisheng.flink.model;

/**
 * Desc:
 * weixi: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class Student {
    public int id;
    public String name;
    public String password;
    public int age;

    public Student() {
    }

    public Student(int id, String name, String password, int age) {
        this.id = id;
        this.name = name;
        this.password = password;
        this.age = age;
    }

    @Override
    public String toString() {
        return "Student{" +
                "id=" + id +
                ", name='" + name + '\'' +
                ", password='" + password + '\'' +
                ", age=" + age +
                '}';
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getPassword() {
        return password;
    }

    public void setPassword(String password) {
        this.password = password;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }
}

新建 Source 類 SourceFromMySQL.java,該類繼承 RichSourceFunction ,實現裏面的 open、close、run、cancel 方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
package com.zhisheng.flink.source;

import com.zhisheng.flink.model.Student;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;


/**
 * Desc:
 * weixi: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class SourceFromMySQL extends RichSourceFunction<Student> {

    PreparedStatement ps;
    private Connection connection;

    /**
     * open() 方法中創建鏈接,這樣不用每次 invoke 的時候都要創建鏈接和釋放鏈接。
     *
     * @param parameters
     * @throws Exception
     */
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        connection = getConnection();
        String sql = "select * from Student;";
        ps = this.connection.prepareStatement(sql);
    }

    /**
     * 程序執行完畢就能夠進行,關閉鏈接和釋放資源的動做了
     *
     * @throws Exception
     */
    @Override
    public void close() throws Exception {
        super.close();
        if (connection != null) { //關閉鏈接和釋放資源
            connection.close();
        }
        if (ps != null) {
            ps.close();
        }
    }

    /**
     * DataStream 調用一次 run() 方法用來獲取數據
     *
     * @param ctx
     * @throws Exception
     */
    @Override
    public void run(SourceContext<Student> ctx) throws Exception {
        ResultSet resultSet = ps.executeQuery();
        while (resultSet.next()) {
            Student student = new Student(
                    resultSet.getInt("id"),
                    resultSet.getString("name").trim(),
                    resultSet.getString("password").trim(),
                    resultSet.getInt("age"));
            ctx.collect(student);
        }
    }

    @Override
    public void cancel() {
    }

    private static Connection getConnection() {
        Connection con = null;
            try {
                Class.forName("com.mysql.jdbc.Driver");
                con = DriverManager.getConnection("jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=UTF-8", "root", "root123456");
            } catch (Exception e) {
                System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
            }
        return con;
    }
}

Flink 程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package com.zhisheng.flink;

import com.zhisheng.flink.source.SourceFromMySQL;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * Desc:
 * weixi: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class Main2 {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.addSource(new SourceFromMySQL()).print();

        env.execute("Flink add data sourc");
    }
}

運行 Flink 程序,控制檯日誌中能夠看見打印的 student 信息。

RichSourceFunction

從上面自定義的 Source 能夠看到咱們繼承的就是這個 RichSourceFunction 類,那麼來了解一下:

一個抽象類,繼承自 AbstractRichFunction。爲實現一個 Rich SourceFunction 提供基礎能力。該類的子類有三個,兩個是抽象類,在此基礎上提供了更具體的實現,另外一個是 ContinuousFileMonitoringFunction。

  • MessageAcknowledgingSourceBase :它針對的是數據源是消息隊列的場景而且提供了基於 ID 的應答機制。
  • MultipleIdsMessageAcknowledgingSourceBase : 在 MessageAcknowledgingSourceBase 的基礎上針對 ID 應答機制進行了更爲細分的處理,支持兩種 ID 應答模型:session id 和 unique message id。
  • ContinuousFileMonitoringFunction:這是單個(非並行)監視任務,它接受 FileInputFormat,而且根據 FileProcessingMode 和 FilePathFilter,它負責監視用戶提供的路徑;決定應該進一步讀取和處理哪些文件;建立與這些文件對應的 FileInputSplit 拆分,將它們分配給下游任務以進行進一步處理。

最後

本文主要講了下 Flink 使用 Kafka Source 的使用,並提供了一個 demo 教你們如何自定義 Source,從 MySQL 中讀取數據,固然你也能夠從其餘地方讀取,實現本身的數據源 source。可能平時工做會比這個更復雜,須要你們靈活應對!

相關文章
相關標籤/搜索