冒泡排序(Bubble Sort)也是一種簡單直觀的排序算法。它重複地走訪過要排序的數列,一次比較兩個元素,若是他們的順序錯誤就把他們交換過來。走訪數列的工做是重複地進行直到沒有再須要交換,也就是說該數列已經排序完成。這個算法的名字由來是由於越小的元素會經由交換慢慢「浮」到數列的頂端。python
做爲最簡單的排序算法之一,冒泡排序給個人感受就像 Abandon 在單詞書裏出現的感受同樣,每次都在第一頁第一位,因此最熟悉。冒泡排序還有一種優化算法,就是立一個 flag,當在一趟序列遍歷中元素沒有發生交換,則證實該序列已經有序。但這種改進對於提高性能來講並無什麼太大做用。git
當輸入的數據已是正序時(都已是正序了,我還要你冒泡排序有何用啊)。github
當輸入的數據是反序時(寫一個 for 循環反序輸出數據不就好了,幹嗎要用你冒泡排序呢,我是閒的嗎)。算法
function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len - 1; i++) { for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j+1]) { // 相鄰元素兩兩對比 var temp = arr[j+1]; // 元素交換 arr[j+1] = arr[j]; arr[j] = temp; } } } return arr; }
def bubbleSort(arr): for i in range(1, len(arr)): for j in range(0, len(arr)-i): if arr[j] > arr[j+1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] return arr
func bubbleSort(arr []int) []int { length := len(arr) for i := 0; i < length; i++ { for j := 0; j < length-1-i; j++ { if arr[j] > arr[j+1] { arr[j], arr[j+1] = arr[j+1], arr[j] } } } return arr }
選擇排序是一種簡單直觀的排序算法,不管什麼數據進去都是 O(n²) 的時間複雜度。因此用到它的時候,數據規模越小越好。惟一的好處可能就是不佔用額外的內存空間了吧。shell
function selectionSort(arr) { var len = arr.length; var minIndex, temp; for (var i = 0; i < len - 1; i++) { minIndex = i; for (var j = i + 1; j < len; j++) { if (arr[j] < arr[minIndex]) { // 尋找最小的數 minIndex = j; // 將最小數的索引保存 } } temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } return arr; }
def selectionSort(arr): for i in range(len(arr)-1): for j in range(i+1, len(arr)): if arr[j] < arr[i]: arr[i], arr[j] = arr[j], arr[i] return arr
func selectionSort(arr []int) []int { length := len(arr) for i := 0; i < length-1; i++ { min := i for j := i + 1; j < length; j++ { if arr[min] > arr[j] { min = j } } arr[i], arr[min] = arr[min], arr[i] } return arr }
插入排序的代碼實現雖然沒有冒泡排序和選擇排序那麼簡單粗暴,但它的原理應該是最容易理解的了,由於只要打過撲克牌的人都應該可以秒懂。插入排序是一種最簡單直觀的排序算法,它的工做原理是經過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。segmentfault
插入排序和冒泡排序同樣,也有一種優化算法,叫作拆半插入。api
function insertionSort(arr) { var len = arr.length; var preIndex, current; for (var i = 1; i < len; i++) { preIndex = i - 1; current = arr[i]; while(preIndex >= 0 && arr[preIndex] > current) { arr[preIndex+1] = arr[preIndex]; preIndex--; } arr[preIndex+1] = current; } return arr; }
def insertionSort(arr): for i in range(len(arr)): preIndex = i-1 current = arr[i] while preIndex >= 0 and arr[preIndex] > current: arr[preIndex+1] = arr[preIndex] preIndex-=1 arr[preIndex+1] = current return arr
func insertionSort(arr []int) []int { for i := range arr { preIndex := i - 1 current := arr[i] for preIndex >= 0 && arr[preIndex] > current { arr[preIndex+1] = arr[preIndex] preIndex -= 1 } arr[preIndex+1] = current } return arr }
希爾排序,也稱遞減增量排序算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序算法。數組
希爾排序是基於插入排序的如下兩點性質而提出改進方法的:數據結構
希爾排序的基本思想是:先將整個待排序的記錄序列分割成爲若干子序列分別進行直接插入排序,待整個序列中的記錄「基本有序」時,再對全體記錄進行依次直接插入排序。架構
function shellSort(arr) { var len = arr.length, temp, gap = 1; while(gap < len/3) { //動態定義間隔序列 gap =gap*3+1; } for (gap; gap > 0; gap = Math.floor(gap/3)) { for (var i = gap; i < len; i++) { temp = arr[i]; for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) { arr[j+gap] = arr[j]; } arr[j+gap] = temp; } } return arr; }
def shellSort(arr): import math gap=1 while(gap < len(arr)/3): gap = gap*3+1 while gap > 0: for i in range(gap,len(arr)): temp = arr[i] j = i-gap while j >=0 and arr[j] > temp: arr[j+gap]=arr[j] j-=gap arr[j+gap] = temp gap = math.floor(gap/3) return arr }
func shellSort(arr []int) []int { length := len(arr) gap := 1 for gap < gap/3 { gap = gap*3 + 1 } for gap > 0 { for i := gap; i < length; i++ { temp := arr[i] j := i - gap for j >= 0 && arr[j] > temp { arr[j+gap] = arr[j] j -= gap } arr[j+gap] = temp } gap = gap / 3 } return arr }
歸併排序(Merge sort)是創建在歸併操做上的一種有效的排序算法。該算法是採用分治法(Divide and Conquer)的一個很是典型的應用。
做爲一種典型的分而治之思想的算法應用,歸併排序的實現由兩種方法:
和選擇排序同樣,歸併排序的性能不受輸入數據的影響,但表現比選擇排序好的多,由於始終都是 O(nlogn) 的時間複雜度。代價是須要額外的內存空間。
function mergeSort(arr) { // 採用自上而下的遞歸方法 var len = arr.length; if(len < 2) { return arr; } var middle = Math.floor(len / 2), left = arr.slice(0, middle), right = arr.slice(middle); return merge(mergeSort(left), mergeSort(right)); } function merge(left, right) { var result = []; while (left.length && right.length) { if (left[0] <= right[0]) { result.push(left.shift()); } else { result.push(right.shift()); } } while (left.length) result.push(left.shift()); while (right.length) result.push(right.shift()); return result; }
def mergeSort(arr): import math if(len(arr)<2): return arr middle = math.floor(len(arr)/2) left, right = arr[0:middle], arr[middle:] return merge(mergeSort(left), mergeSort(right)) def merge(left,right): result = [] while left and right: if left[0] <= right[0]: result.append(left.pop(0)); else: result.append(right.pop(0)); while left: result.append(left.pop(0)); while right: result.append(right.pop(0)); return result
func mergeSort(arr []int) []int { length := len(arr) if length < 2 { return arr } middle := length / 2 left := arr[0:middle] right := arr[middle:] return merge(mergeSort(left), mergeSort(right)) } func merge(left []int, right []int) []int { var result []int for len(left) != 0 && len(right) != 0 { if left[0] <= right[0] { result = append(result, left[0]) left = left[1:] } else { result = append(result, right[0]) right = right[1:] } } for len(left) != 0 { result = append(result, left[0]) left = left[1:] } for len(right) != 0 { result = append(result, right[0]) right = right[1:] } return result }
快速排序是由東尼·霍爾所發展的一種排序算法。在平均情況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞情況下則須要 Ο(n2) 次比較,但這種情況並不常見。事實上,快速排序一般明顯比其餘 Ο(nlogn) 算法更快,由於它的內部循環(inner loop)能夠在大部分的架構上頗有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分爲兩個子串行(sub-lists)。
快速排序又是一種分而治之思想在排序算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。
快速排序的名字起的是簡單粗暴,由於一聽到這個名字你就知道它存在的意義,就是快,並且效率高!它是處理大數據最快的排序算法之一了。雖然 Worst Case 的時間複雜度達到了 O(n²),可是人家就是優秀,在大多數狀況下都比平均時間複雜度爲 O(n logn) 的排序算法表現要更好。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,可是這個算法總會退出,由於在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
function quickSort(arr, left, right) { var len = arr.length, partitionIndex, left = typeof left != 'number' ? 0 : left, right = typeof right != 'number' ? len - 1 : right; if (left < right) { partitionIndex = partition(arr, left, right); quickSort(arr, left, partitionIndex-1); quickSort(arr, partitionIndex+1, right); } return arr; } function partition(arr, left ,right) { // 分區操做 var pivot = left, // 設定基準值(pivot) index = pivot + 1; for (var i = index; i <= right; i++) { if (arr[i] < arr[pivot]) { swap(arr, i, index); index++; } } swap(arr, pivot, index - 1); return index-1; } function swap(arr, i, j) { var temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } functiion paritition2(arr, low, high) { let pivot = arr[low]; while (low < high) { while (low < high && arr[high] > pivot) { --high; } arr[low] = arr[high]; while (low < high && arr[low] <= pivot) { ++low; } arr[high] = arr[low]; } arr[low] = pivot; return low; } function quickSort2(arr, low, high) { if (low < high) { let pivot = paritition2(arr, low, high); quickSort2(arr, low, pivot - 1); quickSort2(arr, pivot + 1, high); } return arr; }
def quickSort(arr, left=None, right=None): left = 0 if not isinstance(left,(int, float)) else left right = len(arr)-1 if not isinstance(right,(int, float)) else right if left < right: partitionIndex = partition(arr, left, right) quickSort(arr, left, partitionIndex-1) quickSort(arr, partitionIndex+1, right) return arr def partition(arr, left, right): pivot = left index = pivot+1 i = index while i <= right: if arr[i] < arr[pivot]: swap(arr, i, index) index+=1 i+=1 swap(arr,pivot,index-1) return index-1 def swap(arr, i, j): arr[i], arr[j] = arr[j], arr[i]
func quickSort(arr []int) []int { return _quickSort(arr, 0, len(arr)-1) } func _quickSort(arr []int, left, right int) []int { if left < right { partitionIndex := partition(arr, left, right) _quickSort(arr, left, partitionIndex-1) _quickSort(arr, partitionIndex+1, right) } return arr } func partition(arr []int, left, right int) int { pivot := left index := pivot + 1 for i := index; i <= right; i++ { if arr[i] < arr[pivot] { swap(arr, i, index) index += 1 } } swap(arr, pivot, index-1) return index - 1 } func swap(arr []int, i, j int) { arr[i], arr[j] = arr[j], arr[i] }
//標準分割函數 Paritition1(int A[], int low, int high) { int pivot = A[low]; while (low < high) { while (low < high && A[high] >= pivot) { --high; } A[low] = A[high]; while (low < high && A[low] <= pivot) { ++low; } A[high] = A[low]; } A[low] = pivot; return low; } void QuickSort(int A[], int low, int high) //快排母函數 { if (low < high) { int pivot = Paritition1(A, low, high); QuickSort(A, low, pivot - 1); QuickSort(A, pivot + 1, high); } }
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似徹底二叉樹的結構,並同時知足堆積的性質:即子結點的鍵值或索引老是小於(或者大於)它的父節點。堆排序能夠說是一種利用堆的概念來排序的選擇排序。分爲兩種方法:
堆排序的平均時間複雜度爲 Ο(nlogn)。
var len; // 由於聲明的多個函數都須要數據長度,因此把len設置成爲全局變量 function buildMaxHeap(arr) { // 創建大頂堆 len = arr.length; for (var i = Math.floor(len/2); i >= 0; i--) { heapify(arr, i); } } function heapify(arr, i) { // 堆調整 var left = 2 * i + 1, right = 2 * i + 2, largest = i; if (left < len && arr[left] > arr[largest]) { largest = left; } if (right < len && arr[right] > arr[largest]) { largest = right; } if (largest != i) { swap(arr, i, largest); heapify(arr, largest); } } function swap(arr, i, j) { var temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } function heapSort(arr) { buildMaxHeap(arr); for (var i = arr.length-1; i > 0; i--) { swap(arr, 0, i); len--; heapify(arr, 0); } return arr; }
def buildMaxHeap(arr): import math for i in range(math.floor(len(arr)/2),-1,-1): heapify(arr,i) def heapify(arr, i): left = 2*i+1 right = 2*i+2 largest = i if left < arrLen and arr[left] > arr[largest]: largest = left if right < arrLen and arr[right] > arr[largest]: largest = right if largest != i: swap(arr, i, largest) heapify(arr, largest) def swap(arr, i, j): arr[i], arr[j] = arr[j], arr[i] def heapSort(arr): global arrLen arrLen = len(arr) buildMaxHeap(arr) for i in range(len(arr)-1,0,-1): swap(arr,0,i) arrLen -=1 heapify(arr, 0) return arr
func heapSort(arr []int) []int { arrLen := len(arr) buildMaxHeap(arr, arrLen) for i := arrLen - 1; i >= 0; i-- { swap(arr, 0, i) arrLen -= 1 heapify(arr, 0, arrLen) } return arr } func buildMaxHeap(arr []int, arrLen int) { for i := arrLen / 2; i >= 0; i-- { heapify(arr, i, arrLen) } } func heapify(arr []int, i, arrLen int) { left := 2*i + 1 right := 2*i + 2 largest := i if left < arrLen && arr[left] > arr[largest] { largest = left } if right < arrLen && arr[right] > arr[largest] { largest = right } if largest != i { swap(arr, i, largest) heapify(arr, largest, arrLen) } } func swap(arr []int, i, j int) { arr[i], arr[j] = arr[j], arr[i] }
計數排序的核心在於將輸入的數據值轉化爲鍵存儲在額外開闢的數組空間中。做爲一種線性時間複雜度的排序,計數排序要求輸入的數據必須是有肯定範圍的整數。
function countingSort(arr, maxValue) { var bucket = new Array(maxValue+1), sortedIndex = 0; arrLen = arr.length, bucketLen = maxValue + 1; for (var i = 0; i < arrLen; i++) { if (!bucket[arr[i]]) { bucket[arr[i]] = 0; } bucket[arr[i]]++; } for (var j = 0; j < bucketLen; j++) { while(bucket[j] > 0) { arr[sortedIndex++] = j; bucket[j]--; } } return arr; }
def countingSort(arr, maxValue): bucketLen = maxValue+1 bucket = [0]*bucketLen sortedIndex =0 arrLen = len(arr) for i in range(arrLen): if not bucket[arr[i]]: bucket[arr[i]]=0 bucket[arr[i]]+=1 for j in range(bucketLen): while bucket[j]>0: arr[sortedIndex] = j sortedIndex+=1 bucket[j]-=1 return arr
func countingSort(arr []int, maxValue int) []int { bucketLen := maxValue + 1 bucket := make([]int, bucketLen) // 初始爲0的數組 sortedIndex := 0 length := len(arr) for i := 0; i < length; i++ { bucket[arr[i]] += 1 } for j := 0; j < bucketLen; j++ { for bucket[j] > 0 { arr[sortedIndex] = j sortedIndex += 1 bucket[j] -= 1 } } return arr }
桶排序是計數排序的升級版。它利用了函數的映射關係,高效與否的關鍵就在於這個映射函數的肯定。爲了使桶排序更加高效,咱們須要作到這兩點:
同時,對於桶中元素的排序,選擇何種比較排序算法對於性能的影響相當重要。
當輸入的數據能夠均勻的分配到每個桶中。
當輸入的數據被分配到了同一個桶中。
function bucketSort(arr, bucketSize) { if (arr.length === 0) { return arr; } var i; var minValue = arr[0]; var maxValue = arr[0]; for (i = 1; i < arr.length; i++) { if (arr[i] < minValue) { minValue = arr[i]; // 輸入數據的最小值 } else if (arr[i] > maxValue) { maxValue = arr[i]; // 輸入數據的最大值 } } //桶的初始化 var DEFAULT_BUCKET_SIZE = 5; // 設置桶的默認數量爲5 bucketSize = bucketSize || DEFAULT_BUCKET_SIZE; var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1; var buckets = new Array(bucketCount); for (i = 0; i < buckets.length; i++) { buckets[i] = []; } //利用映射函數將數據分配到各個桶中 for (i = 0; i < arr.length; i++) { buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]); } arr.length = 0; for (i = 0; i < buckets.length; i++) { insertionSort(buckets[i]); // 對每一個桶進行排序,這裏使用了插入排序 for (var j = 0; j < buckets[i].length; j++) { arr.push(buckets[i][j]); } } return arr; }
基數排序是一種非比較型整數排序算法,其原理是將整數按位數切割成不一樣的數字,而後按每一個位數分別比較。因爲整數也能夠表達字符串(好比名字或日期)和特定格式的浮點數,因此基數排序也不是隻能使用於整數。
基數排序有兩種方法:
這三種排序算法都利用了桶的概念,但對桶的使用方法上有明顯差別:
//LSD Radix Sort var counter = []; function radixSort(arr, maxDigit) { var mod = 10; var dev = 1; for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) { for(var j = 0; j < arr.length; j++) { var bucket = parseInt((arr[j] % mod) / dev); if(counter[bucket]==null) { counter[bucket] = []; } counter[bucket].push(arr[j]); } var pos = 0; for(var j = 0; j < counter.length; j++) { var value = null; if(counter[j]!=null) { while ((value = counter[j].shift()) != null) { arr[pos++] = value; } } } } return arr; }