Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can speed up learning and perhaps even get you to a better final value for the cost function. Having a good optimization algorithm can be the difference between waiting days vs. just a few hours to get a good result.python
Gradient descent goes "downhill" on a cost function JJ. Think of it as trying to do this:app
**Figure 1** : **Minimizing the cost is like finding the lowest point in a hilly landscape**
At each step of the training, you update your parameters following a certain direction to try to get to the lowest possible point.dom
Notations: As usual, ∂J∂a=∂J∂a= da
for any variable a
.ide
To get started, run the following code to import the libraries you will need.oop
In [1]:ui
import numpy as np import matplotlib.pyplot as plt import scipy.io import math import sklearn import sklearn.datasets from opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset from testCases import * %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray'
A simple optimization method in machine learning is gradient descent (GD). When you take gradient steps with respect to all mm examples on each step, it is also called Batch Gradient Descent.this
Warm-up exercise: Implement the gradient descent update rule. The gradient descent rule is, for l=1,...,Ll=1,...,L:idea
W[l]=W[l]−α dW[l](1)(1)W[l]=W[l]−α dW[l]spa
b[l]=b[l]−α db[l](2)(2)b[l]=b[l]−α db[l]scala
where L is the number of layers and αα is the learning rate. All parameters should be stored in the parameters
dictionary. Note that the iterator l
starts at 0 in the for
loop while the first parameters are W[1]W[1] and b[1]b[1]. You need to shift l
to l+1
when coding.
In [2]:
# GRADED FUNCTION: update_parameters_with_gd def update_parameters_with_gd(parameters, grads, learning_rate): """ Update parameters using one step of gradient descent Arguments: parameters -- python dictionary containing your parameters to be updated: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients to update each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl learning_rate -- the learning rate, scalar. Returns: parameters -- python dictionary containing your updated parameters """ L = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter for l in range(L): ### START CODE HERE ### (approx. 2 lines) parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads['dW' + str(l+1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads['db' + str(l+1)] ### END CODE HERE ### return parameters
In [3]:
parameters, grads, learning_rate = update_parameters_with_gd_test_case() parameters = update_parameters_with_gd(parameters, grads, learning_rate) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"]))
W1 = [[ 1.63535156 -0.62320365 -0.53718766] [-1.07799357 0.85639907 -2.29470142]] b1 = [[ 1.74604067] [-0.75184921]] W2 = [[ 0.32171798 -0.25467393 1.46902454] [-2.05617317 -0.31554548 -0.3756023 ] [ 1.1404819 -1.09976462 -0.1612551 ]] b2 = [[-0.88020257] [ 0.02561572] [ 0.57539477]]
Expected Output:
**W1** | [[ 1.63535156 -0.62320365 -0.53718766] [-1.07799357 0.85639907 -2.29470142]] |
**b1** | [[ 1.74604067] [-0.75184921]] |
**W2** | [[ 0.32171798 -0.25467393 1.46902454] [-2.05617317 -0.31554548 -0.3756023 ] [ 1.1404819 -1.09976462 -0.1612551 ]] |
**b2** | [[-0.88020257] [ 0.02561572] [ 0.57539477]] |
A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent.
X = data_input Y = labels parameters = initialize_parameters(layers_dims) for i in range(0, num_iterations): # Forward propagation a, caches = forward_propagation(X, parameters) # Compute cost. cost = compute_cost(a, Y) # Backward propagation. grads = backward_propagation(a, caches, parameters) # Update parameters. parameters = update_parameters(parameters, grads)
X = data_input Y = labels parameters = initialize_parameters(layers_dims) for i in range(0, num_iterations): for j in range(0, m): # Forward propagation a, caches = forward_propagation(X[:,j], parameters) # Compute cost cost = compute_cost(a, Y[:,j]) # Backward propagation grads = backward_propagation(a, caches, parameters) # Update parameters. parameters = update_parameters(parameters, grads)
In Stochastic Gradient Descent, you use only 1 training example before updating the gradients. When the training set is large, SGD can be faster. But the parameters will "oscillate" toward the minimum rather than converge smoothly. Here is an illustration of this:
**Figure 1** : **SGD vs GD**
"+" denotes a minimum of the cost. SGD leads to many oscillations to reach convergence. But each step is a lot faster to compute for SGD than for GD, as it uses only one training example (vs. the whole batch for GD).
Note also that implementing SGD requires 3 for-loops in total:
In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples.
**Figure 2** : **SGD vs Mini-Batch GD**
"+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization.
What you should remember:
Let's learn how to build mini-batches from the training set (X, Y).
There are two steps:
mini_batch_size
(here 64). Note that the number of training examples is not always divisible by mini_batch_size
. The last mini batch might be smaller, but you don't need to worry about this. When the final mini-batch is smaller than the full mini_batch_size
, it will look like this:Exercise: Implement random_mini_batches
. We coded the shuffling part for you. To help you with the partitioning step, we give you the following code that selects the indexes for the 1st1st and 2nd2nd mini-batches:
first_mini_batch_X = shuffled_X[:, 0 : mini_batch_size] second_mini_batch_X = shuffled_X[:, mini_batch_size : 2 * mini_batch_size] ...
Note that the last mini-batch might end up smaller than mini_batch_size=64
. Let ⌊s⌋⌊s⌋ represents ss rounded down to the nearest integer (this is math.floor(s)
in Python). If the total number of examples is not a multiple of mini_batch_size=64
then there will be ⌊mmini_batch_size⌋⌊mmini_batch_size⌋ mini-batches with a full 64 examples, and the number of examples in the final mini-batch will be (m−mini_batch_size×⌊mmini_batch_size⌋m−mini_batch_size×⌊mmini_batch_size⌋).
In [4]:
# GRADED FUNCTION: random_mini_batches def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0): """ Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples) mini_batch_size -- size of the mini-batches, integer Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ np.random.seed(seed) # To make your "random" minibatches the same as ours m = X.shape[1] # number of training examples mini_batches = [] # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[:, permutation] shuffled_Y = Y[:, permutation].reshape((1,m)) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning for k in range(0, num_complete_minibatches): ### START CODE HERE ### (approx. 2 lines) mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1) * mini_batch_size] mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1) * mini_batch_size] ### END CODE HERE ### mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: ### START CODE HERE ### (approx. 2 lines) mini_batch_X = shuffled_X[:, num_complete_minibatches*mini_batch_size:] mini_batch_Y = shuffled_Y[:, num_complete_minibatches*mini_batch_size:] ### END CODE HERE ### mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches
In [5]:
X_assess, Y_assess, mini_batch_size = random_mini_batches_test_case() mini_batches = random_mini_batches(X_assess, Y_assess, mini_batch_size) print ("shape of the 1st mini_batch_X: " + str(mini_batches[0][0].shape)) print ("shape of the 2nd mini_batch_X: " + str(mini_batches[1][0].shape)) print ("shape of the 3rd mini_batch_X: " + str(mini_batches[2][0].shape)) print ("shape of the 1st mini_batch_Y: " + str(mini_batches[0][1].shape)) print ("shape of the 2nd mini_batch_Y: " + str(mini_batches[1][1].shape)) print ("shape of the 3rd mini_batch_Y: " + str(mini_batches[2][1].shape)) print ("mini batch sanity check: " + str(mini_batches[0][0][0][0:3]))
shape of the 1st mini_batch_X: (12288, 64) shape of the 2nd mini_batch_X: (12288, 64) shape of the 3rd mini_batch_X: (12288, 20) shape of the 1st mini_batch_Y: (1, 64) shape of the 2nd mini_batch_Y: (1, 64) shape of the 3rd mini_batch_Y: (1, 20) mini batch sanity check: [ 0.90085595 -0.7612069 0.2344157 ]
Expected Output:
**shape of the 1st mini_batch_X** | (12288, 64) |
**shape of the 2nd mini_batch_X** | (12288, 64) |
**shape of the 3rd mini_batch_X** | (12288, 20) |
**shape of the 1st mini_batch_Y** | (1, 64) |
**shape of the 2nd mini_batch_Y** | (1, 64) |
**shape of the 3rd mini_batch_Y** | (1, 20) |
**mini batch sanity check** | [ 0.90085595 -0.7612069 0.2344157 ] |
What you should remember:
Because mini-batch gradient descent makes a parameter update after seeing just a subset of examples, the direction of the update has some variance, and so the path taken by mini-batch gradient descent will "oscillate" toward convergence. Using momentum can reduce these oscillations.
Momentum takes into account the past gradients to smooth out the update. We will store the 'direction' of the previous gradients in the variable vv. Formally, this will be the exponentially weighted average of the gradient on previous steps. You can also think of vv as the "velocity" of a ball rolling downhill, building up speed (and momentum) according to the direction of the gradient/slope of the hill.
**Figure 3**: The red arrows shows the direction taken by one step of mini-batch gradient descent with momentum. The blue points show the direction of the gradient (with respect to the current mini-batch) on each step. Rather than just following the gradient, we let the gradient influence vv and then take a step in the direction of vv.
Exercise: Initialize the velocity. The velocity, vv, is a python dictionary that needs to be initialized with arrays of zeros. Its keys are the same as those in the grads
dictionary, that is: for l=1,...,Ll=1,...,L:
v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])
Note that the iterator l starts at 0 in the for loop while the first parameters are v["dW1"] and v["db1"] (that's a "one" on the superscript). This is why we are shifting l to l+1 in the for
loop.
In [6]:
# GRADED FUNCTION: initialize_velocity def initialize_velocity(parameters): """ Initializes the velocity as a python dictionary with: - keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. Arguments: parameters -- python dictionary containing your parameters. parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl Returns: v -- python dictionary containing the current velocity. v['dW' + str(l)] = velocity of dWl v['db' + str(l)] = velocity of dbl """ L = len(parameters) // 2 # number of layers in the neural networks v = {} # Initialize velocity for l in range(L): ### START CODE HERE ### (approx. 2 lines) v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape)) v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape)) ### END CODE HERE ### return v
In [7]:
parameters = initialize_velocity_test_case() v = initialize_velocity(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"]))
v["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] v["db1"] = [[ 0.] [ 0.]] v["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] v["db2"] = [[ 0.] [ 0.] [ 0.]]
Expected Output:
**v["dW1"]** | [[ 0. 0. 0.] [ 0. 0. 0.]] |
**v["db1"]** | [[ 0.] [ 0.]] |
**v["dW2"]** | [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] |
**v["db2"]** | [[ 0.] [ 0.] [ 0.]] |
Exercise: Now, implement the parameters update with momentum. The momentum update rule is, for l=1,...,Ll=1,...,L:
{vdW[l]=βvdW[l]+(1−β)dW[l]W[l]=W[l]−αvdW[l](3)(3){vdW[l]=βvdW[l]+(1−β)dW[l]W[l]=W[l]−αvdW[l]
{vdb[l]=βvdb[l]+(1−β)db[l]b[l]=b[l]−αvdb[l](4)(4){vdb[l]=βvdb[l]+(1−β)db[l]b[l]=b[l]−αvdb[l]
where L is the number of layers, ββ is the momentum and αα is the learning rate. All parameters should be stored in the parameters
dictionary. Note that the iterator l
starts at 0 in the for
loop while the first parameters are W[1]W[1] and b[1]b[1] (that's a "one" on the superscript). So you will need to shift l
to l+1
when coding.
In [8]:
# GRADED FUNCTION: update_parameters_with_momentum def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate): """ Update parameters using Momentum Arguments: parameters -- python dictionary containing your parameters: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients for each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl v -- python dictionary containing the current velocity: v['dW' + str(l)] = ... v['db' + str(l)] = ... beta -- the momentum hyperparameter, scalar learning_rate -- the learning rate, scalar Returns: parameters -- python dictionary containing your updated parameters v -- python dictionary containing your updated velocities """ L = len(parameters) // 2 # number of layers in the neural networks # Momentum update for each parameter for l in range(L): ### START CODE HERE ### (approx. 4 lines) # compute velocities v["dW" + str(l+1)] = beta*v["dW" + str(l+1)] + (1-beta)*grads['dW' + str(l+1)] v["db" + str(l+1)] = beta*v["db" + str(l+1)] + (1-beta)*grads['db' + str(l+1)] # update parameters parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v["dW" + str(l+1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v["db" + str(l+1)] ### END CODE HERE ### return parameters, v
In [9]:
parameters, grads, v = update_parameters_with_momentum_test_case() parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"]))
W1 = [[ 1.62544598 -0.61290114 -0.52907334] [-1.07347112 0.86450677 -2.30085497]] b1 = [[ 1.74493465] [-0.76027113]] W2 = [[ 0.31930698 -0.24990073 1.4627996 ] [-2.05974396 -0.32173003 -0.38320915] [ 1.13444069 -1.0998786 -0.1713109 ]] b2 = [[-0.87809283] [ 0.04055394] [ 0.58207317]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902] [-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157] [ 0.16598022] [ 0.07420442]]
Expected Output:
**W1** | [[ 1.62544598 -0.61290114 -0.52907334] [-1.07347112 0.86450677 -2.30085497]] |
**b1** | [[ 1.74493465] [-0.76027113]] |
**W2** | [[ 0.31930698 -0.24990073 1.4627996 ] [-2.05974396 -0.32173003 -0.38320915] [ 1.13444069 -1.0998786 -0.1713109 ]] |
**b2** | [[-0.87809283] [ 0.04055394] [ 0.58207317]] |
**v["dW1"]** | [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] |
**v["db1"]** | [[-0.01228902] [-0.09357694]] |
**v["dW2"]** | [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] |
**v["db2"]** | [[ 0.02344157] [ 0.16598022] [ 0.07420442]] |
Note that:
How do you choose ββ?
What you should remember:
Adam is one of the most effective optimization algorithms for training neural networks. It combines ideas from RMSProp (described in lecture) and Momentum.
How does Adam work?
The update rule is, for l=1,...,Ll=1,...,L:
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪vdW[l]=β1vdW[l]+(1−β1)∂J∂W[l]vcorrecteddW[l]=vdW[l]1−(β1)tsdW[l]=β2sdW[l]+(1−β2)(∂J∂W[l])2scorrecteddW[l]=sdW[l]1−(β1)tW[l]=W[l]−αvcorrecteddW[l]scorrecteddW[l]√+ε{vdW[l]=β1vdW[l]+(1−β1)∂J∂W[l]vdW[l]corrected=vdW[l]1−(β1)tsdW[l]=β2sdW[l]+(1−β2)(∂J∂W[l])2sdW[l]corrected=sdW[l]1−(β1)tW[l]=W[l]−αvdW[l]correctedsdW[l]corrected+ε
where:
As usual, we will store all parameters in the parameters
dictionary
Exercise: Initialize the Adam variables v,sv,s which keep track of the past information.
Instruction: The variables v,sv,s are python dictionaries that need to be initialized with arrays of zeros. Their keys are the same as for grads
, that is: for l=1,...,Ll=1,...,L:
v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)]) s["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) s["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])
In [10]:
# GRADED FUNCTION: initialize_adam def initialize_adam(parameters) : """ Initializes v and s as two python dictionaries with: - keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. Arguments: parameters -- python dictionary containing your parameters. parameters["W" + str(l)] = Wl parameters["b" + str(l)] = bl Returns: v -- python dictionary that will contain the exponentially weighted average of the gradient. v["dW" + str(l)] = ... v["db" + str(l)] = ... s -- python dictionary that will contain the exponentially weighted average of the squared gradient. s["dW" + str(l)] = ... s["db" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural networks v = {} s = {} # Initialize v, s. Input: "parameters". Outputs: "v, s". for l in range(L): ### START CODE HERE ### (approx. 4 lines) v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape)) v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape)) s["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape)) s["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape)) ### END CODE HERE ### return v, s
In [11]:
parameters = initialize_adam_test_case() v, s = initialize_adam(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"]))
v["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] v["db1"] = [[ 0.] [ 0.]] v["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] v["db2"] = [[ 0.] [ 0.] [ 0.]] s["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] s["db1"] = [[ 0.] [ 0.]] s["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] s["db2"] = [[ 0.] [ 0.] [ 0.]]
Expected Output:
**v["dW1"]** | [[ 0. 0. 0.] [ 0. 0. 0.]] |
**v["db1"]** | [[ 0.] [ 0.]] |
**v["dW2"]** | [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] |
**v["db2"]** | [[ 0.] [ 0.] [ 0.]] |
**s["dW1"]** | [[ 0. 0. 0.] [ 0. 0. 0.]] |
**s["db1"]** | [[ 0.] [ 0.]] |
**s["dW2"]** | [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] |
**s["db2"]** | [[ 0.] [ 0.] [ 0.]] |
Exercise: Now, implement the parameters update with Adam. Recall the general update rule is, for l=1,...,Ll=1,...,L:
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪vW[l]=β1vW[l]+(1−β1)∂J∂W[l]vcorrectedW[l]=vW[l]1−(β1)tsW[l]=β2sW[l]+(1−β2)(∂J∂W[l])2scorrectedW[l]=sW[l]1−(β2)tW[l]=W[l]−αvcorrectedW[l]scorrectedW[l]√+ε{vW[l]=β1vW[l]+(1−β1)∂J∂W[l]vW[l]corrected=vW[l]1−(β1)tsW[l]=β2sW[l]+(1−β2)(∂J∂W[l])2sW[l]corrected=sW[l]1−(β2)tW[l]=W[l]−αvW[l]correctedsW[l]corrected+ε
Note that the iterator l
starts at 0 in the for
loop while the first parameters are W[1]W[1] and b[1]b[1]. You need to shift l
to l+1
when coding.
In [15]:
# GRADED FUNCTION: update_parameters_with_adam def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8): """ Update parameters using Adam Arguments: parameters -- python dictionary containing your parameters: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients for each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl v -- Adam variable, moving average of the first gradient, python dictionary s -- Adam variable, moving average of the squared gradient, python dictionary learning_rate -- the learning rate, scalar. beta1 -- Exponential decay hyperparameter for the first moment estimates beta2 -- Exponential decay hyperparameter for the second moment estimates epsilon -- hyperparameter preventing division by zero in Adam updates Returns: parameters -- python dictionary containing your updated parameters v -- Adam variable, moving average of the first gradient, python dictionary s -- Adam variable, moving average of the squared gradient, python dictionary """ L = len(parameters) // 2 # number of layers in the neural networks v_corrected = {} # Initializing first moment estimate, python dictionary s_corrected = {} # Initializing second moment estimate, python dictionary # Perform Adam update on all parameters for l in range(L): # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v". ### START CODE HERE ### (approx. 2 lines) v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1-beta1) * grads['dW' + str(l+1)] v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1-beta1) * grads['db' + str(l+1)] ### END CODE HERE ### # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected". ### START CODE HERE ### (approx. 2 lines) v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - beta1**t) v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - beta1**t) # v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - np.exp(beta1, l)) # v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - np.exp(beta1, l)) ### END CODE HERE ### # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s". ### START CODE HERE ### (approx. 2 lines) # s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1-beta2) * grads['dW' + str(l+1)] * grads['dW' + str(l+1)] # s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1-beta2) * grads['db' + str(l+1)] * grads['db' + str(l+1)] s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1 - beta2)*np.power(grads['dW' + str(l+1)],2) s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1 - beta2)*np.power(grads['db' + str(l+1)],2) ### END CODE HERE ### # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected". ### START CODE HERE ### (approx. 2 lines) s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1 - beta2**2) s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1 - beta2**2) ### END CODE HERE ### # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters". ### START CODE HERE ### (approx. 2 lines) parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*v_corrected["dW" + str(l+1)]/(np.power(s_corrected["dW" + str(l+1)],0.5) + epsilon) parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*v_corrected["db" + str(l+1)]/(np.power(s_corrected["db" + str(l+1)],0.5) + epsilon) ### END CODE HERE ### return parameters, v, s
In [16]:
parameters, grads, v, s = update_parameters_with_adam_test_case() parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t = 2) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"]))
W1 = [[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]] b1 = [[ 1.75225313] [-0.75376553]] W2 = [[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09244991 -0.16498684]] b2 = [[-0.88529979] [ 0.03477238] [ 0.57537385]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902] [-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157] [ 0.16598022] [ 0.07420442]] s["dW1"] = [[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]] s["db1"] = [[ 1.51020075e-05] [ 8.75664434e-04]] s["dW2"] = [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] s["db2"] = [[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]]
Expected Output:
**W1** | [[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]] |
**b1** | [[ 1.75225313] [-0.75376553]] |
**W2** | [[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09245036 -0.16498684]] |
**b2** | [[-0.88529978] [ 0.03477238] [ 0.57537385]] |
**v["dW1"]** | [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] |
**v["db1"]** | [[-0.01228902] [-0.09357694]] |
**v["dW2"]** | [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] |
**v["db2"]** | [[ 0.02344157] [ 0.16598022] [ 0.07420442]] |
**s["dW1"]** | [[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]] |
**s["db1"]** | [[ 1.51020075e-05] [ 8.75664434e-04]] |
**s["dW2"]** | [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] |
**s["db2"]** | [[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]] |
You now have three working optimization algorithms (mini-batch gradient descent, Momentum, Adam). Let's implement a model with each of these optimizers and observe the difference.
Lets use the following "moons" dataset to test the different optimization methods. (The dataset is named "moons" because the data from each of the two classes looks a bit like a crescent-shaped moon.)
In [17]:
train_X, train_Y = load_dataset()
We have already implemented a 3-layer neural network. You will train it with:
update_parameters_with_gd()
initialize_velocity()
and update_parameters_with_momentum()
initialize_adam()
and update_parameters_with_adam()
In [18]:
def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True): """ 3-layer neural network model which can be run in different optimizer modes. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples) layers_dims -- python list, containing the size of each layer learning_rate -- the learning rate, scalar. mini_batch_size -- the size of a mini batch beta -- Momentum hyperparameter beta1 -- Exponential decay hyperparameter for the past gradients estimates beta2 -- Exponential decay hyperparameter for the past squared gradients estimates epsilon -- hyperparameter preventing division by zero in Adam updates num_epochs -- number of epochs print_cost -- True to print the cost every 1000 epochs Returns: parameters -- python dictionary containing your updated parameters """ L = len(layers_dims) # number of layers in the neural networks costs = [] # to keep track of the cost t = 0 # initializing the counter required for Adam update seed = 10 # For grading purposes, so that your "random" minibatches are the same as ours # Initialize parameters parameters = initialize_parameters(layers_dims) # Initialize the optimizer if optimizer == "gd": pass # no initialization required for gradient descent elif optimizer == "momentum": v = initialize_velocity(parameters) elif optimizer == "adam": v, s = initialize_adam(parameters) # Optimization loop for i in range(num_epochs): # Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch seed = seed + 1 minibatches = random_mini_batches(X, Y, mini_batch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # Forward propagation a3, caches = forward_propagation(minibatch_X, parameters) # Compute cost cost = compute_cost(a3, minibatch_Y) # Backward propagation grads = backward_propagation(minibatch_X, minibatch_Y, caches) # Update parameters if optimizer == "gd": parameters = update_parameters_with_gd(parameters, grads, learning_rate) elif optimizer == "momentum": parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate) elif optimizer == "adam": t = t + 1 # Adam counter parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t, learning_rate, beta1, beta2, epsilon) # Print the cost every 1000 epoch if print_cost and i % 1000 == 0: print ("Cost after epoch %i: %f" %(i, cost)) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost plt.plot(costs) plt.ylabel('cost') plt.xlabel('epochs (per 100)') plt.title("Learning rate = " + str(learning_rate)) plt.show() return parameters
You will now run this 3 layer neural network with each of the 3 optimization methods.
Run the following code to see how the model does with mini-batch gradient descent.
In [19]:
# train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "gd") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Gradient Descent optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
Cost after epoch 0: 0.690736 Cost after epoch 1000: 0.685273 Cost after epoch 2000: 0.647072 Cost after epoch 3000: 0.619525 Cost after epoch 4000: 0.576584 Cost after epoch 5000: 0.607243 Cost after epoch 6000: 0.529403 Cost after epoch 7000: 0.460768 Cost after epoch 8000: 0.465586 Cost after epoch 9000: 0.464518
Accuracy: 0.796666666667
Run the following code to see how the model does with momentum. Because this example is relatively simple, the gains from using momemtum are small; but for more complex problems you might see bigger gains.
In [20]:
# train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Momentum optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
Cost after epoch 0: 0.690741 Cost after epoch 1000: 0.685341 Cost after epoch 2000: 0.647145 Cost after epoch 3000: 0.619594 Cost after epoch 4000: 0.576665 Cost after epoch 5000: 0.607324 Cost after epoch 6000: 0.529476 Cost after epoch 7000: 0.460936 Cost after epoch 8000: 0.465780 Cost after epoch 9000: 0.464740
Accuracy: 0.796666666667
Run the following code to see how the model does with Adam.
In [21]:
# train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "adam") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Adam optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
Cost after epoch 0: 0.690563 Cost after epoch 1000: 0.651362 Cost after epoch 2000: 0.623838 Cost after epoch 3000: 0.584447 Cost after epoch 4000: 0.539826 Cost after epoch 5000: 0.555550 Cost after epoch 6000: 0.440262 Cost after epoch 7000: 0.329676 Cost after epoch 8000: 0.322698 Cost after epoch 9000: 0.356201
Accuracy: 0.92
**optimization method** | **accuracy** | **cost shape** |
Gradient descent | 79.7% | oscillations |
Momentum | 79.7% | oscillations |
Adam | 94% | smoother |
Momentum usually helps, but given the small learning rate and the simplistic dataset, its impact is almost negligeable. Also, the huge oscillations you see in the cost come from the fact that some minibatches are more difficult thans others for the optimization algorithm.
Adam on the other hand, clearly outperforms mini-batch gradient descent and Momentum. If you run the model for more epochs on this simple dataset, all three methods will lead to very good results. However, you've seen that Adam converges a lot faster.
Some advantages of Adam include:
References: