【深度學習】一文讀懂機器學習常用損失函數(Loss Function)

最近太忙已經好久沒有寫博客了,今天整理分享一篇關於損失函數的文章吧,以前對損失函數的理解不夠深入,沒有真正理解每個損失函數的特點以及應用範圍,如果文中有任何錯誤,請各位朋友指教,謝謝~   損失函數(loss function)是用來估量模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核
相關文章
相關標籤/搜索