介紹CGAN和ACGAN的原理,經過引入額外的Condition來控制生成的圖片,並在DCGAN和WGAN的基礎上進行實現git
樣本x能夠包含一些屬性,或者說條件,記做y網絡
例如MNIST中每張圖片對應的數字能夠是0至9app
從一張圖來了解CGAN(Conditional GAN)的思想dom
生成器G從隨機噪音z和條件y生成假樣本,判別器D接受真假樣本和條件y,判斷樣本是否爲知足條件y的真實樣本ide
總的目標函數以下函數
$$ \min_{G}\max_{D} V(D,G)=\mathbb{E}{x\sim p{data}}[\log D(x|y)] + \mathbb{E}_{z\sim p_z}[\log(1-D(G(z|y)))] $$優化
先用MNIST,在DCGAN的基礎上稍做改動以實現CGANthis
加載庫rest
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt %matplotlib inline import os, imageio from tqdm import tqdm
加載數據,指定one_hot=True
code
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
定義一些常量、網絡輸入、輔助函數,這裏加上了y_label
和y_noise
batch_size = 100 z_dim = 100 WIDTH = 28 HEIGHT = 28 LABEL = 10 OUTPUT_DIR = 'samples' if not os.path.exists(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) X = tf.placeholder(dtype=tf.float32, shape=[None, HEIGHT, WIDTH, 1], name='X') y_label = tf.placeholder(dtype=tf.float32, shape=[None, HEIGHT, WIDTH, LABEL], name='y_label') noise = tf.placeholder(dtype=tf.float32, shape=[None, z_dim], name='noise') y_noise = tf.placeholder(dtype=tf.float32, shape=[None, LABEL], name='y_noise') is_training = tf.placeholder(dtype=tf.bool, name='is_training') def lrelu(x, leak=0.2): return tf.maximum(x, leak * x) def sigmoid_cross_entropy_with_logits(x, y): return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)
判別器部分
def discriminator(image, label, reuse=None, is_training=is_training): momentum = 0.9 with tf.variable_scope('discriminator', reuse=reuse): h0 = tf.concat([image, label], axis=3) h0 = lrelu(tf.layers.conv2d(h0, kernel_size=5, filters=64, strides=2, padding='same')) h1 = tf.layers.conv2d(h0, kernel_size=5, filters=128, strides=2, padding='same') h1 = lrelu(tf.contrib.layers.batch_norm(h1, is_training=is_training, decay=momentum)) h2 = tf.layers.conv2d(h1, kernel_size=5, filters=256, strides=2, padding='same') h2 = lrelu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum)) h3 = tf.layers.conv2d(h2, kernel_size=5, filters=512, strides=2, padding='same') h3 = lrelu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum)) h4 = tf.contrib.layers.flatten(h3) h4 = tf.layers.dense(h4, units=1) return tf.nn.sigmoid(h4), h4
生成器部分
def generator(z, label, is_training=is_training): momentum = 0.9 with tf.variable_scope('generator', reuse=None): d = 3 z = tf.concat([z, label], axis=1) h0 = tf.layers.dense(z, units=d * d * 512) h0 = tf.reshape(h0, shape=[-1, d, d, 512]) h0 = tf.nn.relu(tf.contrib.layers.batch_norm(h0, is_training=is_training, decay=momentum)) h1 = tf.layers.conv2d_transpose(h0, kernel_size=5, filters=256, strides=2, padding='same') h1 = tf.nn.relu(tf.contrib.layers.batch_norm(h1, is_training=is_training, decay=momentum)) h2 = tf.layers.conv2d_transpose(h1, kernel_size=5, filters=128, strides=2, padding='same') h2 = tf.nn.relu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum)) h3 = tf.layers.conv2d_transpose(h2, kernel_size=5, filters=64, strides=2, padding='same') h3 = tf.nn.relu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum)) h4 = tf.layers.conv2d_transpose(h3, kernel_size=5, filters=1, strides=1, padding='valid', activation=tf.nn.tanh, name='g') return h4
損失函數
g = generator(noise, y_noise) d_real, d_real_logits = discriminator(X, y_label) d_fake, d_fake_logits = discriminator(g, y_label, reuse=True) vars_g = [var for var in tf.trainable_variables() if var.name.startswith('generator')] vars_d = [var for var in tf.trainable_variables() if var.name.startswith('discriminator')] loss_d_real = tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_real_logits, tf.ones_like(d_real))) loss_d_fake = tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_fake_logits, tf.zeros_like(d_fake))) loss_g = tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_fake_logits, tf.ones_like(d_fake))) loss_d = loss_d_real + loss_d_fake
優化函數
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimizer_d = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_d, var_list=vars_d) optimizer_g = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_g, var_list=vars_g)
拼接圖片的函數
def montage(images): if isinstance(images, list): images = np.array(images) img_h = images.shape[1] img_w = images.shape[2] n_plots = int(np.ceil(np.sqrt(images.shape[0]))) m = np.ones((images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5 for i in range(n_plots): for j in range(n_plots): this_filter = i * n_plots + j if this_filter < images.shape[0]: this_img = images[this_filter] m[1 + i + i * img_h:1 + i + (i + 1) * img_h, 1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img return m
訓練模型,加入條件信息
sess = tf.Session() sess.run(tf.global_variables_initializer()) z_samples = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32) y_samples = np.zeros([batch_size, LABEL]) for i in range(LABEL): for j in range(LABEL): y_samples[i * LABEL + j, i] = 1 samples = [] loss = {'d': [], 'g': []} for i in tqdm(range(60000)): n = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32) batch, label = mnist.train.next_batch(batch_size=batch_size) batch = np.reshape(batch, [batch_size, HEIGHT, WIDTH, 1]) batch = (batch - 0.5) * 2 yn = np.copy(label) yl = np.reshape(label, [batch_size, 1, 1, LABEL]) yl = yl * np.ones([batch_size, HEIGHT, WIDTH, LABEL]) d_ls, g_ls = sess.run([loss_d, loss_g], feed_dict={X: batch, noise: n, y_label: yl, y_noise: yn, is_training: True}) loss['d'].append(d_ls) loss['g'].append(g_ls) sess.run(optimizer_d, feed_dict={X: batch, noise: n, y_label: yl, y_noise: yn, is_training: True}) sess.run(optimizer_g, feed_dict={X: batch, noise: n, y_label: yl, y_noise: yn, is_training: True}) sess.run(optimizer_g, feed_dict={X: batch, noise: n, y_label: yl, y_noise: yn, is_training: True}) if i % 1000 == 0: print(i, d_ls, g_ls) gen_imgs = sess.run(g, feed_dict={noise: z_samples, y_noise: y_samples, is_training: False}) gen_imgs = (gen_imgs + 1) / 2 imgs = [img[:, :, 0] for img in gen_imgs] gen_imgs = montage(imgs) plt.axis('off') plt.imshow(gen_imgs, cmap='gray') imageio.imsave(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % i), gen_imgs) plt.show() samples.append(gen_imgs) plt.plot(loss['d'], label='Discriminator') plt.plot(loss['g'], label='Generator') plt.legend(loc='upper right') plt.savefig('Loss.png') plt.show() imageio.mimsave(os.path.join(OUTPUT_DIR, 'samples.gif'), samples, fps=5)
生成的手寫數字圖片以下,每一行對應的數字相同
保存模型,便於後續使用
saver = tf.train.Saver() saver.save(sess, './mnist_cgan', global_step=60000)
在單機上使用模型生成手寫數字圖片
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt batch_size = 100 z_dim = 100 LABEL = 10 def montage(images): if isinstance(images, list): images = np.array(images) img_h = images.shape[1] img_w = images.shape[2] n_plots = int(np.ceil(np.sqrt(images.shape[0]))) m = np.ones((images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5 for i in range(n_plots): for j in range(n_plots): this_filter = i * n_plots + j if this_filter < images.shape[0]: this_img = images[this_filter] m[1 + i + i * img_h:1 + i + (i + 1) * img_h, 1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img return m sess = tf.Session() sess.run(tf.global_variables_initializer()) saver = tf.train.import_meta_graph('./mnist_cgan-60000.meta') saver.restore(sess, tf.train.latest_checkpoint('./')) graph = tf.get_default_graph() g = graph.get_tensor_by_name('generator/g/Tanh:0') noise = graph.get_tensor_by_name('noise:0') y_noise = graph.get_tensor_by_name('y_noise:0') is_training = graph.get_tensor_by_name('is_training:0') n = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32) y_samples = np.zeros([batch_size, LABEL]) for i in range(LABEL): for j in range(LABEL): y_samples[i * LABEL + j, i] = 1 gen_imgs = sess.run(g, feed_dict={noise: n, y_noise: y_samples, is_training: False}) gen_imgs = (gen_imgs + 1) / 2 imgs = [img[:, :, 0] for img in gen_imgs] gen_imgs = montage(imgs) plt.axis('off') plt.imshow(gen_imgs, cmap='gray') plt.show()
瞭解CGAN的原理和實現以後,再嘗試下別的數據集,好比以前用過的CelebA
CelebA提供了每張圖片40個屬性的01標註,這裏將Male(是否爲男性)做爲條件,在WGAN的基礎上實現CGAN
加載庫
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import os import matplotlib.pyplot as plt %matplotlib inline from imageio import imread, imsave, mimsave import cv2 import glob from tqdm import tqdm
加載圖片
images = glob.glob('celeba/*.jpg') print(len(images))
讀取圖片的Male標籤
tags = {} target = 'Male' with open('list_attr_celeba.txt', 'r') as fr: lines = fr.readlines() all_tags = lines[0].strip('\n').split() for i in range(1, len(lines)): line = lines[i].strip('\n').split() if int(line[all_tags.index(target) + 1]) == 1: tags[line[0]] = [1, 0] # 男 else: tags[line[0]] = [0, 1] # 女 print(len(tags)) print(all_tags)
定義一些常量、網絡輸入、輔助函數
batch_size = 100 z_dim = 100 WIDTH = 64 HEIGHT = 64 LABEL = 2 LAMBDA = 10 DIS_ITERS = 3 # 5 OUTPUT_DIR = 'samples' if not os.path.exists(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) X = tf.placeholder(dtype=tf.float32, shape=[batch_size, HEIGHT, WIDTH, 3], name='X') y_label = tf.placeholder(dtype=tf.float32, shape=[batch_size, HEIGHT, WIDTH, LABEL], name='y_label') noise = tf.placeholder(dtype=tf.float32, shape=[batch_size, z_dim], name='noise') y_noise = tf.placeholder(dtype=tf.float32, shape=[batch_size, LABEL], name='y_noise') is_training = tf.placeholder(dtype=tf.bool, name='is_training') def lrelu(x, leak=0.2): return tf.maximum(x, leak * x)
判別器部分
def discriminator(image, label, reuse=None, is_training=is_training): momentum = 0.9 with tf.variable_scope('discriminator', reuse=reuse): h0 = tf.concat([image, label], axis=3) h0 = lrelu(tf.layers.conv2d(h0, kernel_size=5, filters=64, strides=2, padding='same')) h1 = lrelu(tf.layers.conv2d(h0, kernel_size=5, filters=128, strides=2, padding='same')) h2 = lrelu(tf.layers.conv2d(h1, kernel_size=5, filters=256, strides=2, padding='same')) h3 = lrelu(tf.layers.conv2d(h2, kernel_size=5, filters=512, strides=2, padding='same')) h4 = tf.contrib.layers.flatten(h3) h4 = tf.layers.dense(h4, units=1) return h4
生成器部分
def generator(z, label, is_training=is_training): momentum = 0.9 with tf.variable_scope('generator', reuse=None): d = 4 z = tf.concat([z, label], axis=1) h0 = tf.layers.dense(z, units=d * d * 512) h0 = tf.reshape(h0, shape=[-1, d, d, 512]) h0 = tf.nn.relu(tf.contrib.layers.batch_norm(h0, is_training=is_training, decay=momentum)) h1 = tf.layers.conv2d_transpose(h0, kernel_size=5, filters=256, strides=2, padding='same') h1 = tf.nn.relu(tf.contrib.layers.batch_norm(h1, is_training=is_training, decay=momentum)) h2 = tf.layers.conv2d_transpose(h1, kernel_size=5, filters=128, strides=2, padding='same') h2 = tf.nn.relu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum)) h3 = tf.layers.conv2d_transpose(h2, kernel_size=5, filters=64, strides=2, padding='same') h3 = tf.nn.relu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum)) h4 = tf.layers.conv2d_transpose(h3, kernel_size=5, filters=3, strides=2, padding='same', activation=tf.nn.tanh, name='g') return h4
定義損失函數
g = generator(noise, y_noise) d_real = discriminator(X, y_label) d_fake = discriminator(g, y_label, reuse=True) loss_d_real = -tf.reduce_mean(d_real) loss_d_fake = tf.reduce_mean(d_fake) loss_g = -tf.reduce_mean(d_fake) loss_d = loss_d_real + loss_d_fake alpha = tf.random_uniform(shape=[batch_size, 1, 1, 1], minval=0., maxval=1.) interpolates = alpha * X + (1 - alpha) * g grad = tf.gradients(discriminator(interpolates, y_label, reuse=True), [interpolates])[0] slop = tf.sqrt(tf.reduce_sum(tf.square(grad), axis=[1])) gp = tf.reduce_mean((slop - 1.) ** 2) loss_d += LAMBDA * gp vars_g = [var for var in tf.trainable_variables() if var.name.startswith('generator')] vars_d = [var for var in tf.trainable_variables() if var.name.startswith('discriminator')]
定義優化器
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimizer_d = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_d, var_list=vars_d) optimizer_g = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_g, var_list=vars_g)
拼接圖片的函數
def montage(images): if isinstance(images, list): images = np.array(images) img_h = images.shape[1] img_w = images.shape[2] n_plots = int(np.ceil(np.sqrt(images.shape[0]))) if len(images.shape) == 4 and images.shape[3] == 3: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1, 3)) * 0.5 elif len(images.shape) == 4 and images.shape[3] == 1: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1, 1)) * 0.5 elif len(images.shape) == 3: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5 else: raise ValueError('Could not parse image shape of {}'.format(images.shape)) for i in range(n_plots): for j in range(n_plots): this_filter = i * n_plots + j if this_filter < images.shape[0]: this_img = images[this_filter] m[1 + i + i * img_h:1 + i + (i + 1) * img_h, 1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img return m
整理數據
X_all = [] Y_all = [] for i in tqdm(range(len(images))): image = imread(images[i]) h = image.shape[0] w = image.shape[1] if h > w: image = image[h // 2 - w // 2: h // 2 + w // 2, :, :] else: image = image[:, w // 2 - h // 2: w // 2 + h // 2, :] image = cv2.resize(image, (WIDTH, HEIGHT)) image = (image / 255. - 0.5) * 2 X_all.append(image) image_name = images[i][images[i].find('/') + 1:] Y_all.append(tags[image_name]) X_all = np.array(X_all) Y_all = np.array(Y_all) print(X_all.shape, Y_all.shape)
查看數據樣例
for i in range(10): plt.imshow((X_all[i, :, :, :] + 1) / 2) plt.show() print(Y_all[i, :])
定義隨機產生批數據的函數
def get_random_batch(): data_index = np.arange(X_all.shape[0]) np.random.shuffle(data_index) data_index = data_index[:batch_size] X_batch = X_all[data_index, :, :, :] Y_batch = Y_all[data_index, :] yn = np.copy(Y_batch) yl = np.reshape(Y_batch, [batch_size, 1, 1, LABEL]) yl = yl * np.ones([batch_size, HEIGHT, WIDTH, LABEL]) return X_batch, yn, yl
訓練模型
sess = tf.Session() sess.run(tf.global_variables_initializer()) zs = np.random.uniform(-1.0, 1.0, [batch_size // 2, z_dim]).astype(np.float32) z_samples = [] y_samples = [] for i in range(batch_size // 2): z_samples.append(zs[i, :]) y_samples.append([1, 0]) z_samples.append(zs[i, :]) y_samples.append([0, 1]) samples = [] loss = {'d': [], 'g': []} for i in tqdm(range(60000)): for j in range(DIS_ITERS): n = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32) X_batch, yn, yl = get_random_batch() _, d_ls = sess.run([optimizer_d, loss_d], feed_dict={X: X_batch, noise: n, y_label: yl, y_noise: yn, is_training: True}) _, g_ls = sess.run([optimizer_g, loss_g], feed_dict={X: X_batch, noise: n, y_label: yl, y_noise: yn, is_training: True}) loss['d'].append(d_ls) loss['g'].append(g_ls) if i % 500 == 0: print(i, d_ls, g_ls) gen_imgs = sess.run(g, feed_dict={noise: z_samples, y_noise: y_samples, is_training: False}) gen_imgs = (gen_imgs + 1) / 2 imgs = [img[:, :, :] for img in gen_imgs] gen_imgs = montage(imgs) plt.axis('off') plt.imshow(gen_imgs) imsave(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % i), gen_imgs) plt.show() samples.append(gen_imgs) plt.plot(loss['d'], label='Discriminator') plt.plot(loss['g'], label='Generator') plt.legend(loc='upper right') plt.savefig('Loss.png') plt.show() mimsave(os.path.join(OUTPUT_DIR, 'samples.gif'), samples, fps=10)
結果以下,對於每一組圖片,噪音部分相同但條件不一樣,男左女右
保存模型
saver = tf.train.Saver() saver.save(sess, './celeba_cgan', global_step=60000)
再經過一張圖瞭解ACGAN(Auxiliary Classifier GAN)的原理
和CGAN不一樣的是,C不直接輸入D。D不只須要判斷每一個樣本的真假,還須要完成一個分類任務即預測C,經過增長一個輔助分類器實現
對D而言,損失函數以下
$$ L_{adv}(D)=-\mathbb{E}{x\sim p{data}}[\log D(x)]-\mathbb{E}{z\sim p_z,c\sim p{c}}[\log(1-D(G(z,c)))] $$
$$ L_{cls}(D)=\mathbb{E}{x\sim p{data}}[L_D(c_x|x)] $$
對G而言,損失函數以下
$$ L_{adv}(G)=\mathbb{E}{z\sim p_z,c\sim p{c}}[\log(1-D(G(z,c)))] $$
$$ L_{cls}(G)=\mathbb{E}{z\sim p_z,c\sim p{c}}[L_D(c|G(z,c))] $$
仍是以CelebA的Male做爲條件,在WGAN的基礎上實現ACGAN
加載庫
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import os import matplotlib.pyplot as plt %matplotlib inline from imageio import imread, imsave, mimsave import cv2 import glob from tqdm import tqdm
加載圖片
images = glob.glob('celeba/*.jpg') print(len(images))
讀取圖片的Male標籤
tags = {} target = 'Male' with open('list_attr_celeba.txt', 'r') as fr: lines = fr.readlines() all_tags = lines[0].strip('\n').split() for i in range(1, len(lines)): line = lines[i].strip('\n').split() if int(line[all_tags.index(target) + 1]) == 1: tags[line[0]] = [1, 0] # 男 else: tags[line[0]] = [0, 1] # 女 print(len(tags)) print(all_tags)
定義一些常量、網絡輸入、輔助函數
batch_size = 100 z_dim = 100 WIDTH = 64 HEIGHT = 64 LABEL = 2 LAMBDA = 10 DIS_ITERS = 3 # 5 OUTPUT_DIR = 'samples' if not os.path.exists(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) X = tf.placeholder(dtype=tf.float32, shape=[batch_size, HEIGHT, WIDTH, 3], name='X') Y = tf.placeholder(dtype=tf.float32, shape=[batch_size, LABEL], name='Y') noise = tf.placeholder(dtype=tf.float32, shape=[batch_size, z_dim], name='noise') is_training = tf.placeholder(dtype=tf.bool, name='is_training') def lrelu(x, leak=0.2): return tf.maximum(x, leak * x)
判別器部分,去掉條件輸入,增長分類輸出
def discriminator(image, reuse=None, is_training=is_training): momentum = 0.9 with tf.variable_scope('discriminator', reuse=reuse): h0 = lrelu(tf.layers.conv2d(image, kernel_size=5, filters=64, strides=2, padding='same')) h1 = lrelu(tf.layers.conv2d(h0, kernel_size=5, filters=128, strides=2, padding='same')) h2 = lrelu(tf.layers.conv2d(h1, kernel_size=5, filters=256, strides=2, padding='same')) h3 = lrelu(tf.layers.conv2d(h2, kernel_size=5, filters=512, strides=2, padding='same')) h4 = tf.contrib.layers.flatten(h3) Y_ = tf.layers.dense(h4, units=LABEL) h4 = tf.layers.dense(h4, units=1) return h4, Y_
生成器部分,沒有任何改動
def generator(z, label, is_training=is_training): momentum = 0.9 with tf.variable_scope('generator', reuse=None): d = 4 z = tf.concat([z, label], axis=1) h0 = tf.layers.dense(z, units=d * d * 512) h0 = tf.reshape(h0, shape=[-1, d, d, 512]) h0 = tf.nn.relu(tf.contrib.layers.batch_norm(h0, is_training=is_training, decay=momentum)) h1 = tf.layers.conv2d_transpose(h0, kernel_size=5, filters=256, strides=2, padding='same') h1 = tf.nn.relu(tf.contrib.layers.batch_norm(h1, is_training=is_training, decay=momentum)) h2 = tf.layers.conv2d_transpose(h1, kernel_size=5, filters=128, strides=2, padding='same') h2 = tf.nn.relu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum)) h3 = tf.layers.conv2d_transpose(h2, kernel_size=5, filters=64, strides=2, padding='same') h3 = tf.nn.relu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum)) h4 = tf.layers.conv2d_transpose(h3, kernel_size=5, filters=3, strides=2, padding='same', activation=tf.nn.tanh, name='g') return h4
定義損失函數,加上分類部分對應的損失。理論上分類問題應該用交叉熵做爲損失函數,這裏使用MSE效果也不錯
g = generator(noise, Y) d_real, y_real = discriminator(X) d_fake, y_fake = discriminator(g, reuse=True) loss_d_real = -tf.reduce_mean(d_real) loss_d_fake = tf.reduce_mean(d_fake) loss_cls_real = tf.losses.mean_squared_error(Y, y_real) loss_cls_fake = tf.losses.mean_squared_error(Y, y_fake) loss_d = loss_d_real + loss_d_fake + loss_cls_real loss_g = -tf.reduce_mean(d_fake) + loss_cls_fake alpha = tf.random_uniform(shape=[batch_size, 1, 1, 1], minval=0., maxval=1.) interpolates = alpha * X + (1 - alpha) * g grad = tf.gradients(discriminator(interpolates, reuse=True), [interpolates])[0] slop = tf.sqrt(tf.reduce_sum(tf.square(grad), axis=[1])) gp = tf.reduce_mean((slop - 1.) ** 2) loss_d += LAMBDA * gp vars_g = [var for var in tf.trainable_variables() if var.name.startswith('generator')] vars_d = [var for var in tf.trainable_variables() if var.name.startswith('discriminator')]
定義優化器
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimizer_d = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_d, var_list=vars_d) optimizer_g = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_g, var_list=vars_g)
拼接圖片的函數
def montage(images): if isinstance(images, list): images = np.array(images) img_h = images.shape[1] img_w = images.shape[2] n_plots = int(np.ceil(np.sqrt(images.shape[0]))) if len(images.shape) == 4 and images.shape[3] == 3: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1, 3)) * 0.5 elif len(images.shape) == 4 and images.shape[3] == 1: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1, 1)) * 0.5 elif len(images.shape) == 3: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5 else: raise ValueError('Could not parse image shape of {}'.format(images.shape)) for i in range(n_plots): for j in range(n_plots): this_filter = i * n_plots + j if this_filter < images.shape[0]: this_img = images[this_filter] m[1 + i + i * img_h:1 + i + (i + 1) * img_h, 1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img return m
整理數據
X_all = [] Y_all = [] for i in tqdm(range(len(images))): image = imread(images[i]) h = image.shape[0] w = image.shape[1] if h > w: image = image[h // 2 - w // 2: h // 2 + w // 2, :, :] else: image = image[:, w // 2 - h // 2: w // 2 + h // 2, :] image = cv2.resize(image, (WIDTH, HEIGHT)) image = (image / 255. - 0.5) * 2 X_all.append(image) image_name = images[i][images[i].find('/') + 1:] Y_all.append(tags[image_name]) X_all = np.array(X_all) Y_all = np.array(Y_all) print(X_all.shape, Y_all.shape)
查看數據樣例
for i in range(10): plt.imshow((X_all[i, :, :, :] + 1) / 2) plt.show() print(Y_all[i, :])
定義隨機產生批數據的函數
def get_random_batch(): data_index = np.arange(X_all.shape[0]) np.random.shuffle(data_index) data_index = data_index[:batch_size] X_batch = X_all[data_index, :, :, :] Y_batch = Y_all[data_index, :] return X_batch, Y_batch
訓練模型,根據ACGAN做相應調整
sess = tf.Session() sess.run(tf.global_variables_initializer()) zs = np.random.uniform(-1.0, 1.0, [batch_size // 2, z_dim]).astype(np.float32) z_samples = [] y_samples = [] for i in range(batch_size // 2): z_samples.append(zs[i, :]) y_samples.append([1, 0]) z_samples.append(zs[i, :]) y_samples.append([0, 1]) samples = [] loss = {'d': [], 'g': []} for i in tqdm(range(60000)): for j in range(DIS_ITERS): n = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32) X_batch, Y_batch = get_random_batch() _, d_ls = sess.run([optimizer_d, loss_d], feed_dict={X: X_batch, Y: Y_batch, noise: n, is_training: True}) _, g_ls = sess.run([optimizer_g, loss_g], feed_dict={X: X_batch, Y: Y_batch, noise: n, is_training: True}) loss['d'].append(d_ls) loss['g'].append(g_ls) if i % 500 == 0: print(i, d_ls, g_ls) gen_imgs = sess.run(g, feed_dict={noise: z_samples, Y: y_samples, is_training: False}) gen_imgs = (gen_imgs + 1) / 2 imgs = [img[:, :, :] for img in gen_imgs] gen_imgs = montage(imgs) plt.axis('off') plt.imshow(gen_imgs) imsave(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % i), gen_imgs) plt.show() samples.append(gen_imgs) plt.plot(loss['d'], label='Discriminator') plt.plot(loss['g'], label='Generator') plt.legend(loc='upper right') plt.savefig('Loss.png') plt.show() mimsave(os.path.join(OUTPUT_DIR, 'samples.gif'), samples, fps=10)
結果以下,比CGAN的結果好一些,崩掉的狀況比較少,並且人臉更真實更清晰
保存模型
saver = tf.train.Saver() saver.save(sess, './celeba_acgan', global_step=60000)
在單機上加載模型,進行如下兩個嘗試:
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt batch_size = 100 z_dim = 100 LABEL = 2 def montage(images): if isinstance(images, list): images = np.array(images) img_h = images.shape[1] img_w = images.shape[2] n_plots = int(np.ceil(np.sqrt(images.shape[0]))) if len(images.shape) == 4 and images.shape[3] == 3: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1, 3)) * 0.5 elif len(images.shape) == 4 and images.shape[3] == 1: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1, 1)) * 0.5 elif len(images.shape) == 3: m = np.ones( (images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5 else: raise ValueError('Could not parse image shape of {}'.format(images.shape)) for i in range(n_plots): for j in range(n_plots): this_filter = i * n_plots + j if this_filter < images.shape[0]: this_img = images[this_filter] m[1 + i + i * img_h:1 + i + (i + 1) * img_h, 1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img return m sess = tf.Session() sess.run(tf.global_variables_initializer()) saver = tf.train.import_meta_graph('./celeba_acgan-60000.meta') saver.restore(sess, tf.train.latest_checkpoint('./')) graph = tf.get_default_graph() g = graph.get_tensor_by_name('generator/g/Tanh:0') noise = graph.get_tensor_by_name('noise:0') Y = graph.get_tensor_by_name('Y:0') is_training = graph.get_tensor_by_name('is_training:0') # 固定噪音,漸變條件 n = np.random.uniform(-1.0, 1.0, [10, z_dim]).astype(np.float32) ns = [] y_samples = [] for i in range(100): ns.append(n[i // 10, :]) y_samples.append([i % 10 / 9, 1 - i % 10 / 9]) gen_imgs = sess.run(g, feed_dict={noise: ns, Y: y_samples, is_training: False}) gen_imgs = (gen_imgs + 1) / 2 imgs = [img[:, :, :] for img in gen_imgs] gen_imgs = montage(imgs) gen_imgs = np.clip(gen_imgs, 0, 1) plt.figure(figsize=(8, 8)) plt.axis('off') plt.imshow(gen_imgs) plt.show() # 固定條件,漸變噪音 n = np.random.uniform(-1.0, 1.0, [5, 2, z_dim]).astype(np.float32) ns = [] y_samples = [] for i in range(5): for k in range(2): for j in range(10): start = n[i, 0, :] end = n[i, 1, :] ns.append(start + j * (end - start) / 9) if k == 0: y_samples.append([0, 1]) else: y_samples.append([1, 0]) gen_imgs = sess.run(g, feed_dict={noise: ns, Y: y_samples, is_training: False}) gen_imgs = (gen_imgs + 1) / 2 imgs = [img[:, :, :] for img in gen_imgs] gen_imgs = montage(imgs) gen_imgs = np.clip(gen_imgs, 0, 1) plt.figure(figsize=(8, 8)) plt.axis('off') plt.imshow(gen_imgs) plt.show()
由女變男的過程
人臉兩兩之間的漸變