機器學習中的正則化項(L1, L2)的理解

正則化(Regularization) 機器學習中幾乎都可以看到損失函數後面會添加一個額外項,常用的額外項一般有兩種,一般英文稱作ℓ1-norm和ℓ2-norm,中文稱作L1正則化和L2正則化,或者L1範數和L2範數。 L1正則化和L2正則化可以看做是損失函數的懲罰項。所謂『懲罰』是指對損失函數中的某些參數做一些限制。對於線性迴歸模型,使用L1正則化的模型建叫做Lasso迴歸,使用L2正則化的模型
相關文章
相關標籤/搜索