Job1.javajava
package com.oracle.moviecf;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* 與Job2共同完成:
* 用戶對電影的評價矩陣 × 電影特徵建模矩陣 = 用戶對某種特徵的偏好權重
* (矩陣的相乘)
* */
public class Job1 {
public static class Map extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String split[];
String val;
String mvID;
String userID;
if(line.startsWith("u")) {
split = line.split("\t");
userID = split[0];
for(int i = 1; i < split.length; i++) {
val = split[i].substring(split[i].indexOf("_")+1);
mvID = split[i].substring(0, split[i].indexOf("_"));
context.write(new Text(mvID), new Text(userID+"_"+val));
}
}
if(line.startsWith("m")) {
split = line.split("\t");
for(int i = 1; i < split.length; i++) {
context.write(new Text(split[0]), new Text(split[i]));
}
}
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
List<String> list_user_val = new ArrayList<>();
List<String> list_tag_val = new ArrayList<>();
for(Text i: values) {
if(i.toString().startsWith("u")) {
list_user_val.add(i.toString());
}else {
list_tag_val.add(i.toString());
}
}
String userID;
double userVal;
String tagID;
double tagVal;
for(String i: list_user_val) {
userID = i.substring(0, i.indexOf("_"));
userVal = Double.parseDouble(i.substring(i.indexOf("_")+1));
for(String j: list_tag_val) {
tagID = j.substring(0, j.indexOf("_"));
tagVal = Double.parseDouble(j.substring(j.indexOf("_")+1));
context.write(new Text(userID+"_"+tagID), new Text(String.valueOf(userVal*tagVal)));
}
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(Job1.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path("/moviecf/input"));
FileOutputFormat.setOutputPath(job, new Path("/moviecf/output1"));
job.waitForCompletion(true);
}
}
Job2.javaapache
package com.oracle.moviecf;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* 與Job1共同完成
* 目的:
* 用戶對電影的評價矩陣 × 電影特徵建模矩陣 = 用戶對某種特徵的偏好權重
* */
public class Job2 {
public static class Map extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String split[] = line.split("\t");
String userID;
String tagID;
userID = split[0].substring(0, split[0].indexOf("_"));
tagID = split[0].substring(split[0].indexOf("_")+1);
context.write(new Text(userID), new Text(tagID+"_"+split[1]));
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
HashMap<String, Double> map = new HashMap<>();
List<String> list = new ArrayList<>();
String tagID;
double val;
for(Text i: values) {
tagID = i.toString().substring(0, i.toString().indexOf("_"));
val = Double.parseDouble(i.toString().substring(i.toString().indexOf("_")+1));
if(!map.containsKey(tagID)) {
map.put(tagID, val);
list.add(tagID);
}else {
map.put(tagID, val+map.get(tagID));
}
}
StringBuffer line = new StringBuffer();
Collections.sort(list);
for(String i: list) {
line.append(i+"_"+map.get(i)+"\t");
}
context.write(key, new Text(line.toString()));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(Job2.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path("/moviecf/output1"));
FileOutputFormat.setOutputPath(job, new Path("/moviecf/output2"));
job.waitForCompletion(true);
}
}
Job3.javaoracle
package com.oracle.moviecf;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;/**
* 類似度
* 與Job4同用
* 根據 用戶對特徵的偏好權重矩陣 與 電影特徵建模矩陣 ,求用戶對電影的餘弦類似度,即獲得每一個用戶對每一個電影的喜歡程度
*
* */
public class Job3 {
public static class Map extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String split[] = line.split("\t");
String userID = split[0];
String tagID;
double val;
double a = 0; //分母
for(int i = 1; i < split.length; i++) {
val = Double.parseDouble(split[i].substring(split[i].indexOf("_")+1));
a += val*val;
}
for(int i = 1; i < split.length; i++) {
tagID = split[i].substring(0, split[i].indexOf("_"));
val = Double.parseDouble(split[i].substring(split[i].indexOf("_")+1));
context.write(new Text(tagID), new Text(userID+"_"+val+"_"+a));
}
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
List<String> list_user = new ArrayList<>();
List<String> list_movie = new ArrayList<>();
String user_a;
String mv_a;
double user_val;
double mv_val;
String userID;
String mvID;
for(Text i: values) {
if(i.toString().startsWith("u")) {
list_user.add(i.toString());
}else {
list_movie.add(i.toString());
}
}
String split[];
for(String i: list_user) {
split = i.split("_");
userID = split[0];
user_val = Double.parseDouble(split[1]);
user_a = split[2];
for(String j: list_movie) {
split = j.split("_");
mvID = split[0];
mv_val = Double.parseDouble(split[1]);
mv_a = split[2];
context.write(new Text(userID+"_"+mvID), new Text((mv_val*user_val)+"_"+user_a+"_"+mv_a));
}
}
/*for(Text i: values) {
context.write(key, i);
}*/
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(Job3.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path("/moviecf/output2"));
FileInputFormat.addInputPath(job, new Path("/moviecf/input/data1.txt"));
FileOutputFormat.setOutputPath(job, new Path("/moviecf/output3"));
job.waitForCompletion(true);
}
}
Job4.javaapp
package com.oracle.moviecf;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* 與Job3同用
* 根據 用戶對特徵的偏好權重矩陣 與 電影特徵建模矩陣 ,求用戶對電影的餘弦類似度,即獲得每一個用戶對每一個電影的喜歡程度
* */
public class Job4 {
public static class Map extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String split[] = line.split("\t");
String userID = line.substring(0, line.indexOf("_"));
String mvID = split[0].substring(split[0].indexOf("_")+1);
context.write(new Text(userID), new Text(mvID+"\t"+split[1]));
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
HashMap<String, Double> map_a = new HashMap<>();
HashMap<String, Double> map_b = new HashMap<>();
List<String> keyList = new ArrayList<>();
String[] split;
String[] stemp;
double a;
double b;
for(Text i: values) {
split = i.toString().split("\t");
stemp = split[1].split("_");
a = Math.sqrt(Double.parseDouble(stemp[1])*Double.parseDouble(stemp[2]));
b = Double.parseDouble(stemp[0]);
if(!map_a.containsKey(split[0])) {
map_a.put(split[0], a);
map_b.put(split[0], b);
keyList.add(split[0]);
}else {
map_b.put(split[0], b+map_b.get(split[0]));
}
}
Collections.sort(keyList);
StringBuffer result = new StringBuffer();
String userID = key.toString();
double val;
for(String i: keyList) {
val = map_b.get(i) / map_a.get(i);
result.append(i+"_"+String.format("%.1f", val)+"\t");
}
context.write(key, new Text(result.toString()));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(Job4.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path("/moviecf/output3"));
FileOutputFormat.setOutputPath(job, new Path("/moviecf/output4"));
job.waitForCompletion(true);
}
}