這次安裝是帶有GPU的安裝,若是沒有GPU只安裝CPU,可參考個人另外一篇文章,搞深度學習還得有顯卡吃硬件,要不等着吐血吧。
一、安裝環境:ubuntu16.04+caffe-master+cuda8.0+cudnnv5.1 ,安裝環境所需的安裝包我已打包上傳,下載地址.http://www.roselady.vip/a/cangjingge/boke/ai/2018/0322/709.html
二、安裝caffe依賴包html
1 |
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler |
3 |
sudo apt-get install --no- install -recommends libboost-all-dev |
5 |
sudo apt-get install libatlas-base-dev |
7 |
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev |
|
三、ubuntu16.04最好是安裝cuda8.0不要安最新,聽官網的沒錯。下載cuda8.0,https://developer.nvidia.com/cuda-downloads
四、卸載之前的舊驅動準備換最新的linux
1 |
sudo apt-get --purge remove nvidia-\* |
|
五、禁止集成的nouveau驅動,必須禁止的不然沒可能安裝成功的。ubuntu
1 |
sudo vi /etc/modprobe.d/blacklist-nouveau.conf |
|
1 |
<span style= "font-size:16px;" >blacklist-nouveau.conf文件可能並不存在不過不要緊,向裏面寫入下面一句話,一個字都不能錯 |
1 |
blacklist nouveau option nouveau modeset=0 |
|
保存退出後運行此命令,不能報錯,報錯了確定就沒禁止成功app
1 |
sudo update-initramfs -u |
|
配置環境變量,直接用就行,反正是臨時的工具
1 |
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH |
3 |
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH |
|
六、安裝顯卡驅動,不然可能會報內核之類的錯誤學習
只需一條命令測試
1 |
sudo apt-get install nvidia- |
|
有人問上面那條命令沒寫完啊,其實就是寫這麼多,而後猛擊tab鍵兩次(也能夠輕點),下面就會出來許多版本的驅動,固然是安裝一個版本最高的,例如ui
1 |
sudo apt-get install nvidia-352 |
|
七、經過 Ctrl + Alt + F1 進入文本模式,輸入賬號密碼登陸,經過 Ctrl + Alt + F7 可返回圖形化模式,在文本模式登陸後
首先關閉桌面服務google
1 |
sudo service lightdm stop |
|
八、開始安裝cuda,直接運行命令,出現0%後一直安回車直到100%,全選 yes便可spa
1 |
./cuda_8.0.61_375.26_linux.run --no-opengl-libs |
|
九、其實這樣還不算,toolkit工具尚未安裝成功,可能用nvcc –V測試
1 |
sudo apt install nvidia-cuda-toolkit |
|
十、驗證 CUDA 8.0 是否安裝成功,輸入下面命令
1 |
cd /usr/ local /cuda-8.0/samples/1_Utilities/deviceQuery |
|
若是顯示下面信息說明安裝成功了。若是不行reboot重啓一下
01 |
./deviceQuery Starting... |
03 |
CUDA Device Query (Runtime API) version (CUDART static linking) |
05 |
Detected 1 CUDA Capable device(s) |
07 |
Device 0: "GeForce GTX 650" |
08 |
CUDA Driver Version / Runtime Version 9.1 / 8.0 |
09 |
CUDA Capability Major/Minor version number: 3.0 |
10 |
Total amount of global memory: 978 MBytes (1025638400 bytes) |
11 |
( 2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores |
12 |
GPU Max Clock rate: 1058 MHz (1.06 GHz) |
13 |
Memory Clock rate: 2500 Mhz |
14 |
Memory Bus Width: 128-bit |
15 |
L2 Cache Size: 262144 bytes |
16 |
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) |
17 |
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers |
18 |
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers |
19 |
Total amount of constant memory: 65536 bytes |
20 |
Total amount of shared memory per block: 49152 bytes |
21 |
Total number of registers available per block: 65536 |
23 |
Maximum number of threads per multiprocessor: 2048 |
24 |
Maximum number of threads per block: 1024 |
25 |
Max dimension size of a thread block (x,y,z): (1024, 1024, 64) |
26 |
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) |
27 |
Maximum memory pitch: 2147483647 bytes |
28 |
Texture alignment: 512 bytes |
29 |
Concurrent copy and kernel execution: Yes with 1 copy engine(s) |
30 |
Run time limit on kernels: Yes |
31 |
Integrated GPU sharing Host Memory: No |
32 |
Support host page-locked memory mapping: Yes |
33 |
Alignment requirement for Surfaces: Yes |
34 |
Device has ECC support: Disabled |
35 |
Device supports Unified Addressing (UVA): Yes |
36 |
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 |
|
十一、安裝CUDNN加速
登陸官網:https://developer.nvidia.com/rdp/cudnn-download ,下載對應 cuda 版本且 linux 系統的 cudnn 壓縮包,注意官網下載 cudnn 須要註冊賬號並登陸,我是從國內下載的v5.1版本,下載地址,使用下面命令進行解壓
1 |
cp cudnn-8.0-linux-x64-v5.1.solitairetheme8 cudnn-8.0-linux-x64-v5.1.tgz |
3 |
tar xvf cudnn-8.0-linux-x64-v5.1.tgz |
|
十二、cuda和cudnn進行合併,按下面命令操做進入解壓後的cuda目錄
查看源碼打印代碼幫助
1 |
sudo cp include/cudnn.h /usr/ local /cuda/include/ #複製頭文件 |
3 |
sudo cp lib64/lib* /usr/ local /cuda/lib64/ #複製動態連接庫 |
4 |
cd /usr/ local /cuda/lib64/ sudo rm -rf libcudnn.so libcudnn.so.5 #刪除原有動態文件 |
5 |
sudo ln -s libcudnn.so.5.1.10 libcudnn.so.5 #生成軟銜接 |
6 |
sudo ln -s libcudnn.so.5 libcudnn.so #生成軟連接 |
|
1三、到這基本也就完事了,下載caffe,解壓,創建編譯文件夾build-x64,進入後執行下面命令便可,大功告成