在DataFrame數據表裏面提取須要的行python
代碼功能:3d
在DataFrame表格中使用loc(),獲得咱們想要的行,而後根據某一列元素的值進行排序blog
此代碼中還展現了爲DataFrame添加列,即直接name_DataFrame['diff']=___便可,同時能夠依據新添加的列元素的值,來對dataframe進行排序排序
import pandas as pd unames = ['user_id', 'gender', 'age','occupation','zip'] users = pd.read_table('users.dat', sep='::',header=None, names=unames) rnames = ['user_id', 'movie_id', 'rating', 'timestamp'] ratings = pd.read_table('ratings.dat', sep='::', header=None, names=rnames) mnames = ['movie_id', 'title', 'genres'] movies = pd.read_table('movies.dat', sep='::', header=None, names=mnames) data = pd.merge(pd.merge(ratings,users),movies) mean_ratings = pd.pivot_table(data,index=['title'],values='rating',columns='gender') print(mean_ratings[:10]) ratings_by_title = data.groupby('title').size() print(ratings_by_title[:10]) active_titles = ratings_by_title.index[ratings_by_title >= 250] print(active_titles) active_mean_ratings = mean_ratings.loc[active_titles] top_female_ratings = active_mean_ratings.sort_index(by='F', ascending=False) active_mean_ratings['diff'] = active_mean_ratings['M'] - active_mean_ratings['F'] sorted_by_diff = active_mean_ratings.sort_index(by='diff') print(sorted_by_diff[::-1][:15]) #注意對dataframe進行倒序訪問的方法