寫博客是爲了記錄下來,畢竟好多東西記不住,看過就忘了,收藏又太多,還不如搬運到本身博客下面,隨時可翻~~~函數
近期再學目標識別與定位,看着原理都很簡單,可是真本身作,又以爲困難重重。spa
csdn上一個大神發了一個蟲子的定位切割程序,跑了一下效果不錯,所以記錄下來,能夠在此基礎上改進。.net
import cv2 import numpy as np def get_image(path): #獲取圖片 img=cv2.imread(path) gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) return img, gray def Gaussian_Blur(gray): # 高斯去噪 blurred = cv2.GaussianBlur(gray, (9, 9),0) return blurred def Sobel_gradient(blurred): # 索比爾算子來計算x、y方向梯度 gradX = cv2.Sobel(blurred, ddepth=cv2.CV_32F, dx=1, dy=0) gradY = cv2.Sobel(blurred, ddepth=cv2.CV_32F, dx=0, dy=1) gradient = cv2.subtract(gradX, gradY) gradient = cv2.convertScaleAbs(gradient) return gradX, gradY, gradient def Thresh_and_blur(gradient): #濾波,二值化 blurred = cv2.GaussianBlur(gradient, (9, 9),0) (_, thresh) = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY) return thresh def image_morphology(thresh): #形態學,補齊邊緣 # 創建一個橢圓核函數 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (25, 25)) #返回指定形狀和尺寸的結構元素, # 定義一個25x25的橢圓形內核 # 執行圖像形態學, 細節直接查文檔,很簡單 closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) #開運算,開運算即爲先腐蝕再膨脹,目的是消除白色點點 closed = cv2.erode(closed, None, iterations=4) #腐蝕 closed = cv2.dilate(closed, None, iterations=4) #膨脹 return closed def findcnts_and_box_point(closed): #尋找目標輪廓和中心點 # 這裏opencv3返回的是三個參數 (_, cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) c = sorted(cnts, key=cv2.contourArea, reverse=True)[0] #倒序排列 #cv2.contourArea是輪廓的面積,所以是按照面積由大到小的順序排序 # compute the rotated bounding box of the largest contour rect = cv2.minAreaRect(c) #旋轉的邊界矩形,面積最小,返回值爲Box2D結構,分別爲左上角座標、寬和高,旋轉角度 box = np.int0(cv2.boxPoints(rect)) #搭配cv2.minAreaRect函數,用於繪製旋轉邊界矩形 return box def drawcnts_and_cut(original_img, box): #畫輪廓 # 由於這個函數有極強的破壞性,全部須要在img.copy()上畫 # draw a bounding box arounded the detected barcode and display the image draw_img = cv2.drawContours(original_img.copy(), [box], -1, (0, 0, 255), 3) #繪製全部輪廓 Xs = [i[0] for i in box] Ys = [i[1] for i in box] x1 = min(Xs) x2 = max(Xs) y1 = min(Ys) y2 = max(Ys) hight = y2 - y1 width = x2 - x1 crop_img = original_img[y1:y1+hight, x1:x1+width] return draw_img, crop_img def walk(): img_path = r'F:\pycharm\test\iterable\cz.png' save_path = r'F:\pycharm\test\iterable\cz_save.png' original_img, gray = get_image(img_path) blurred = Gaussian_Blur(gray) gradX, gradY, gradient = Sobel_gradient(blurred) thresh = Thresh_and_blur(gradient) closed = image_morphology(thresh) box = findcnts_and_box_point(closed) draw_img, crop_img = drawcnts_and_cut(original_img,box) # 暴力一點,把它們都顯示出來看看 cv2.imshow('original_img', original_img) cv2.imshow('blurred', blurred) cv2.imshow('gradX', gradX) cv2.imshow('gradY', gradY) cv2.imshow('final', gradient) cv2.imshow('thresh', thresh) cv2.imshow('closed', closed) cv2.imshow('draw_img', draw_img) cv2.imshow('crop_img', crop_img) cv2.waitKey(20171219) cv2.imwrite(save_path, crop_img) walk()
但願本身早日寫出實現功能的代碼。code
原做網址爲:https://blog.csdn.net/sinat_36458870/article/details/78825571。blog
感謝。排序