這裏用到的仍是最小二乘方法,和上一次這篇文章原理差很少。html
就是首先構造最小二乘函數,而後對每個係數計算偏導,構造矩陣乘法形式,最後解方程組。函數
好比有一個二次曲面:z=ax^2+by^2+cxy+dx+ey+fspa
首先構造最小二乘函數,而後計算係數偏導(我直接手寫了):3d
解方程組(下圖中A矩陣後面求和符號我就沒寫了啊),而後計算C:code
代碼以下:htm
clear all; close all; clc; a=2;b=2;c=-3;d=1;e=2;f=30; %係數 n=1:0.2:20; x=repmat(n,96,1); y=repmat(n',1,96); z=a*x.^2+b*y.^2+c*x.*y+d*x+e*y +f; %原始模型 surf(x,y,z) N=100; ind=int8(rand(N,2)*95+1); X=x(sub2ind(size(x),ind(:,1),ind(:,2))); Y=y(sub2ind(size(y),ind(:,1),ind(:,2))); Z=z(sub2ind(size(z),ind(:,1),ind(:,2)))+rand(N,1)*20; %生成待擬合點,加個噪聲 hold on; plot3(X,Y,Z,'o'); A=[N sum(Y) sum(X) sum(X.*Y) sum(Y.^2) sum(X.^2); sum(Y) sum(Y.^2) sum(X.*Y) sum(X.*Y.^2) sum(Y.^3) sum(X.^2.*Y); sum(X) sum(X.*Y) sum(X.^2) sum(X.^2.*Y) sum(X.*Y.^2) sum(X.^3); sum(X.*Y) sum(X.*Y.^2) sum(X.^2.*Y) sum(X.^2.*Y.^2) sum(X.*Y.^3) sum(X.^3.*Y); sum(Y.^2) sum(Y.^3) sum(X.*Y.^2) sum(X.*Y.^3) sum(Y.^4) sum(X.^2.*Y.^2); sum(X.^2) sum(X.^2.*Y) sum(X.^3) sum(X.^3.*Y) sum(X.^2.*Y.^2) sum(X.^4)]; B=[sum(Z) sum(Z.*Y) sum(Z.*X) sum(Z.*X.*Y) sum(Z.*Y.^2) sum(Z.*X.^2)]'; C=inv(A)*B; z=C(6)*x.^2+C(5)*y.^2+C(4)*x.*y+C(3)*x+C(2)*y +C(1); %擬合結果 mesh(x,y,z)
結果以下,深色曲面是原模型,淺色曲面是用噪聲數據擬合的模型:blog
注:加權最小二乘能夠參考我後來的這篇文章。get