Python數據結構——二叉樹的實現

1. 二叉樹

二叉樹(binary tree)中的每一個節點都不能有多於兩個的兒子。node

1.1 二叉樹列表實現python

如上圖的二叉樹可用列表表示:算法

tree=['A',  #root
      ['B',    #左子樹
       ['D',[],[]],
       ['E',[],[]]],
      ['C',     #右子樹
       ['F',[],[]],
       []]
      ]

實現:express

def BinaryTree(item):
    return [item,[],[]]
def insertLeft(tree,item):
    leftSubtree=tree.pop(1)
    if leftSubtree:
        tree.insert(1,[item,leftSubtree,[]])
    else:
        tree.insert(1,[item,[],[]])
    return tree
def insertRight(tree,item):
    rightSubtree=tree.pop(2)
    if rightSubtree:
        tree.insert(2,[item,[],rightSubtree])
    else:
        tree.insert(2,[item,[],[]])
    return tree
def getLeftChild(tree):
    return tree[1]
def getRightChild(tree):
    return tree[2]

 要實現下圖的樹:app

  

tree=BinaryTree('a')
insertLeft(tree,'b')
insertRight(tree,'c')
insertRight((getLeftChild(tree)),'d')
insertLeft((getRightChild(tree)),'e')
insertRight((getRightChild(tree)),'f')

1.2 二叉樹的類實現post

class BinaryTree(object):
    def __init__(self,item):
        self.key=item
        self.leftChild=None
        self.rightChild=None
    def insertLeft(self,item):
        if self.leftChild==None:
            self.leftChild=BinaryTree(item)
        else:
            t=BinaryTree(item)
            t.leftChild=self.leftChild
            self.leftChild=t
    def insertRight(self,item):
        if self.rightChild==None:
            self.rightChild=BinaryTree(item)
        else:
            t=BinaryTree(item)
            t.rightChild=self.rightChild
            self.rightChild=t

2. 表達式樹

表達式樹(expression tree)的樹葉是操做數,其餘節點爲操做符。ui

     圖   ((7+3)*(5-2))的表達式樹表示3d

2.1 根據中綴表達式構造表達式樹:指針

 遍歷表達式:blog

1.創建一個空樹

2.遇到'(',爲當前的Node添加一個left child,並將left child當作當前Node。

3.遇到數字,賦值給當前的Node,並返回parent做爲當前Node。

4.遇到('+-*/'),賦值給當前Node,並添加一個Node做爲right child,將right child當作當前的Node。

5.遇到')',返回當前Node的parent。

def buildexpressionTree(exp):
    tree=BinaryTree('')
    stack=[]
    stack.append(tree)
    currentTree=tree
    for i in exp:
        if i=='(':
            currentTree.insertLeft('')
            stack.append(currentTree)
            currentTree=currentTree.leftChild
        elif i not in '+-*/()':
            currentTree.key=int(i)
            parent=stack.pop()
            currentTree=parent
        elif i in '+-*/':
            currentTree.key=i
            currentTree.insertRight('')
            stack.append(currentTree)
            currentTree=currentTree.rightChild
        elif i==')':
            currentTree=stack.pop()
        else:
            raise ValueError
    return tree

上述算法對中綴表達式的寫法要求比較繁瑣,小括號應用太多,例如要寫成(a+(b*c))的形式。

用後綴表達式構建表達式樹會方便一點:若是符號是操做數,創建一個單節點並將一個指向它的指針推入棧中。若是符號是一個操做符,從棧中彈出指向兩棵樹T1和T2的指針並造成一棵新的樹,樹的根爲此操做符,左右兒子分別指向T2和T1.

def build_tree_with_post(exp):
    stack=[]
    oper='+-*/'
    for i in exp:
        if i not in oper:
            tree=BinaryTree(int(i))
            stack.append(tree)
        else:
            righttree=stack.pop()
            lefttree=stack.pop()
            tree=BinaryTree(i)
            tree.leftChild=lefttree
            tree.rightChild=righttree
            stack.append(tree)
    return stack.pop()

3.樹的遍歷

3.1 先序遍歷(preorder travelsal)

先打印出根,而後遞歸的打印出左子樹、右子樹,對應先綴表達式

def preorder(tree,nodelist=None):
    if nodelist is None:
        nodelist=[]
    if tree:
        nodelist.append(tree.key)
        preorder(tree.leftChild,nodelist)
        preorder(tree.rightChild,nodelist)
    return nodelist

  

3.2 中序遍歷(inorder travelsal)

先遞歸的打印左子樹,而後打印根,最後遞歸的打印右子樹,對應中綴表達式

def inorder(tree):
    if tree:
        inorder(tree.leftChild)
        print tree.key
        inorder(tree.rightChild)

3.3 後序遍歷(postorder travelsal)

遞歸的打印出左子樹、右子樹,而後打印根,對應後綴表達式

def postorder(tree):
    if tree:
        for key in postorder(tree.leftChild):
            yield key
        for key in postorder(tree.rightChild):
            yield key
        yield tree.key

3.4 表達式樹的求值

def postordereval(tree):
    operators={'+':operator.add,'-':operator.sub,'*':operator.mul,'/':operator.truediv}
    leftvalue=None
    rightvalue=None
    if tree:
        leftvalue=postordereval(tree.leftChild)
        rightvalue=postordereval(tree.rightChild)
        if leftvalue and rightvalue:
            return operators[tree.key](leftvalue,rightvalue)
        else:
            return tree.key
相關文章
相關標籤/搜索