經過上一個章節,咱們已經知道的類在底層是以什麼樣的方式存在的,而且類的屬性,成員變量和方法的存儲也有了必定的瞭解,可是類的方法是怎麼讀取的,每次都要從存儲的列表中讀出來麼,是否是又必定的緩存機制呢?咱們開始研究算法
傳送門☞iOS底層學習 -類的前世此生(一)數組
cache_t
結構經過查看類的結構,咱們知道isa
是用來指向類信息的,superclass
是父類相關,class_data_bits_t
是用來存儲屬性,方法等數據的,那麼若是有緩存機制的話,必定是存儲在cache_t
中了緩存
struct objc_class : objc_object {
// Class ISA; //8
Class superclass; //8
cache_t cache; //16 // formerly cache pointer and vtable
class_data_bits_t bits;
...省略方法等信息...
};
複製代碼
經過上一章節,咱們對cache_t
有個初步的瞭解,結構如圖 安全
cache_t
功能cache_t
的底層是一個哈希表存在,用於緩存調用過的方法,提升查找速度,不用每次從class_data_bits_t
進行遍歷查找。用哈希表存儲時,存儲的位置是不肯定的,空間也有必定的浪費,可是時間複雜度比較低,是典型的空間換時間bash
cache_t
定義struct bucket_t *_buckets
struct bucket_t *_buckets
是一個結構體指針less
cache_key_t
爲方法的SEL,也就是方法名,MethodCacheIMP
爲對應的函數的內存地址從struct bucket_t * find(cache_key_t key, id receiver);
方法能夠得出,cache_t
底層的存儲是一個以cache_key_t
爲key,bucket_t
爲value的一個哈希表函數
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
MethodCacheIMP _imp;
cache_key_t _key;
#else
cache_key_t _key;
MethodCacheIMP _imp;
#endif
public:
inline cache_key_t key() const { return _key; }
inline IMP imp() const { return (IMP)_imp; }
inline void setKey(cache_key_t newKey) { _key = newKey; }
inline void setImp(IMP newImp) { _imp = newImp; }
void set(cache_key_t newKey, IMP newImp);
};
複製代碼
mask_t _mask
mask_t _mask
只是一個32位的int值 ,等於(哈希表長度 - 1)post
typedef uint32_t mask_t;
複製代碼
mask_t _occupied
同理_occupied
也是一個值,記錄了緩存的方法的數量學習
cache_t
流程經過對objc_cache.mm
源碼的註釋的閱讀,咱們能夠獲得一個緩存讀寫的大體過程。相關讀取的過程,即在方法轉發過程當中,獲取到已緩存的IMP函數指針,從而得到方法 ,重點在存取的過程,能夠從方法cache_fill
開始ui
cache_fill
經過註釋咱們得知,存取的過程是須要加鎖來保證線程安全的,_collecting_in_critical
相似輪詢線程,保證調用,因此,主要實現的主要方法再cache_fill_nolock(cls, sel, imp, receiver);
中進行
void cache_fill(Class cls, SEL sel, IMP imp, id receiver)
{
#if !DEBUG_TASK_THREADS
mutex_locker_t lock(cacheUpdateLock);
cache_fill_nolock(cls, sel, imp, receiver);
#else
_collecting_in_critical();
return;
#endif
}
複製代碼
在locker
構造時加鎖,析構時解鎖,正好保護了方法做用域內的方法調用。這和 EasyReact 中大量使用的__attribute__((cleanup(AnyFUNC), unused))
一模一樣,都是爲了實現自動解鎖的效果。
class locker : nocopy_t {
mutex_tt& lock;
public:
locker(mutex_tt& newLock)
: lock(newLock) { lock.lock(); }
~locker() { lock.unlock(); }
};
複製代碼
cache_fill_nolock
static void cache_fill_nolock(Class cls, SEL sel, IMP imp, id receiver)
{
cacheUpdateLock.assertLocked();
// Never cache before +initialize is done
if (!cls->isInitialized()) return;
// Make sure the entry was not added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
if (cache_getImp(cls, sel)) return;
cache_t *cache = getCache(cls);
cache_key_t key = getKey(sel);
// Use the cache as-is if it is less than 3/4 full
mask_t newOccupied = cache->occupied() + 1;
mask_t capacity = cache->capacity();
if (cache->isConstantEmptyCache()) {
// Cache is read-only. Replace it.
cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
}
else if (newOccupied <= capacity / 4 * 3) {
// Cache is less than 3/4 full. Use it as-is.
}
else {
// Cache is too full. Expand it.
cache->expand();
}
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot because the
// minimum size is 4 and we resized at 3/4 full.
bucket_t *bucket = cache->find(key, receiver);
if (bucket->key() == 0) cache->incrementOccupied();
bucket->set(key, imp);
}
複製代碼
經過上面的源碼,咱們能夠得出如下主要步驟
if (!cls->isInitialized()) return;
若是類沒有進行初始化操做,則不能進行緩存的操做,這個比較好理解if (cache_getImp(cls, sel)) return;
由於有可能其餘線程先進行了存儲,因此須要再找查找一遍,若是能夠找到緩存,則直接返回,不須要進行緩存的存儲cache_t *cache = getCache(cls);
和cache_key_t key = getKey(sel);
分別爲獲取到類的cache_t
對象和根據方法名獲取到cache_key_t
對象mask_t newOccupied = cache->occupied() + 1;
和mask_t capacity = cache->capacity();
分別爲cache對象的Occupied和mask對象在原基礎上+1if (cache->isConstantEmptyCache())
表示cache是隻讀的,此時,須要執行cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
方法進行從新申請內存else if (newOccupied <= capacity / 4 * 3)
沒有超出哈希表3/4容量時,跳過直接進行下面緩存的操做cache->expand();
進行哈希表擴容bucket_t *bucket = cache->find(key, receiver);
根據key進行方法存儲cache->incrementOccupied()
Occupied++bucket->set(key, imp);
寫入哈希表經過上面的分析,咱們對cache的存儲流程有了大致的瞭解,其中重點的流程在於緩存如何申請空間cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE)
,如何擴容cache->expand();
,如何寫入緩存bucket_t *bucket = cache->find(key, receiver);
首先是isConstantEmptyCache()
方法,表示buckets
是一個只讀數組。主要邏輯以下
capacity
計算大小,若是小於EMPTY_BYTES
,則直接返回(bucket_t *)&_objc_empty_cache
,二進制運算後爲空bool cache_t::isConstantEmptyCache()
{
return
occupied() == 0 &&
buckets() == emptyBucketsForCapacity(capacity(), false);
}
複製代碼
bucket_t *emptyBucketsForCapacity(mask_t capacity, bool allocate = true)
{
cacheUpdateLock.assertLocked();
size_t bytes = cache_t::bytesForCapacity(capacity);
// Use _objc_empty_cache if the buckets is small enough.
if (bytes <= EMPTY_BYTES) {
return (bucket_t *)&_objc_empty_cache;
}
// Use shared empty buckets allocated on the heap.
static bucket_t **emptyBucketsList = nil;
static mask_t emptyBucketsListCount = 0;
mask_t index = log2u(capacity);
if (index >= emptyBucketsListCount) {
if (!allocate) return nil;
mask_t newListCount = index + 1;
bucket_t *newBuckets = (bucket_t *)calloc(bytes, 1);
emptyBucketsList = (bucket_t**)
realloc(emptyBucketsList, newListCount * sizeof(bucket_t *));
// Share newBuckets for every un-allocated size smaller than index.
// The array is therefore always fully populated.
for (mask_t i = emptyBucketsListCount; i < newListCount; i++) {
emptyBucketsList[i] = newBuckets;
}
emptyBucketsListCount = newListCount;
if (PrintCaches) {
_objc_inform("CACHES: new empty buckets at %p (capacity %zu)",
newBuckets, (size_t)capacity);
}
}
return emptyBucketsList[index];
}
複製代碼
其次,是cache_t::reallocate
方法,這個方法主要是用來申請緩存空間,主要邏輯以下
canBeFreed()
表示緩存空間不爲空,若是爲空則不須要後續的清空操做bucket_t *oldBuckets = buckets();
獲取舊的緩存空間,bucket_t *newBuckets = allocateBuckets(newCapacity);
是指根據傳入的空間,生成新的緩存空間,初始值爲INIT_CACHE_SIZE
4字節setBucketsAndMask(newBuckets, newCapacity - 1);
設置cache_t
中的屬性cache_collect_free(oldBuckets, oldCapacity);
釋放舊的緩存空間,在新的緩存空間進行緩存void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity)
{
bool freeOld = canBeFreed();
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
// Cache is not old contents are not propagated.
// This is thought to save cache memory at the cost of extra cache fills.
// fixme re-measure this
assert(newCapacity > 0);
assert((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
setBucketsAndMask(newBuckets, newCapacity - 1);
if (freeOld) {
cache_collect_free(oldBuckets, oldCapacity);
cache_collect(false);
}
}
複製代碼
這個方法就是判斷若是此時存儲大於了緩存空間的3/4時,對緩存空間進行擴容,算法也比較簡單粗暴,就是以前緩存空間的2倍大小,完成後調用reallocate
生成空間
void cache_t::expand()
{
cacheUpdateLock.assertLocked();
uint32_t oldCapacity = capacity();
uint32_t newCapacity = oldCapacity ? oldCapacity*2 : INIT_CACHE_SIZE;
if ((uint32_t)(mask_t)newCapacity != newCapacity) {
// mask overflow - can not grow further
// fixme this wastes one bit of mask
newCapacity = oldCapacity;
}
reallocate(oldCapacity, newCapacity);
}
複製代碼
這個方法就是根據key找到底層哈希表存儲的對應的bucket_t
,主要流程以下
cache_hash
經過cache_hash
函數,即key&mask
計算出key值對應的index值 begin,用來記錄查詢起始索引do while循環
表示用這個i從散列表取值,若是取出來的bucket_t的 key = k
,則查詢成功,返回該bucket_t
,若是key = 0,說明在索引i的位置上尚未緩存過方法,一樣須要返回該bucket_t
,用於停止緩存查詢。i = i-1
,回到上面do循環裏面,至關於查找散列表上一個單元格里面的元素,再次進行key值k的比較,當i=0時,也就i指向散列表最首個元素索引的時候從新將mask賦值給i,使其指向散列表最後一個元素,從新開始反向遍歷散列表,其實就至關於繞圈,把散列表頭尾連起來,不就是一個圈嘛,從begin值開始,遞減索引值,當走過一圈以後,必然會從新回到begin值,若是此時尚未找到key對應的bucket_t
,或者是空的bucket_t
,則循環結束,說明查找失敗,調用bad_cache
方法。bucket_t * cache_t::find(cache_key_t k, id receiver)
{
assert(k != 0);
bucket_t *b = buckets();
mask_t m = mask();
mask_t begin = cache_hash(k, m);
// begin 賦值給 i,用於切換索引
mask_t i = begin;
do {
if (b[i].key() == 0 || b[i].key() == k) {
return &b[i];
}
} while ((i = cache_next(i, m)) != begin);
Class cls = (Class)((uintptr_t)this - offsetof(objc_class, cache));
cache_t::bad_cache(receiver, (SEL)k, cls);
}
複製代碼
static inline mask_t cache_hash(cache_key_t key, mask_t mask)
{
return (mask_t)(key & mask);
}
複製代碼
static inline mask_t cache_next(mask_t i, mask_t mask) {
return (i+1) & mask;
}
複製代碼
至此,一個cache的基本流程就完成了
cache_key_t_key
和MethodCacheIMP
的方式緩存在類的_buckets
中,初始是一個4字節的哈希表,mask
值爲哈希表長度-1。存儲時,使用SEL轉換爲的cache_key_t_key
&mask
來當作下標存入哈希表