JavaShuo
欄目
標籤
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering筆記
時間 2020-12-29
原文
原文鏈接
來源: COLING 2018 Long Paper 原文 Movation 以往的模型在複雜問題(問題實體和答案實體之間相隔較遠)上的表現很差。 作者認爲: We claim that one needs to explicitly model the semantic structure to be able to find the correct semantic parse for com
>>阅读原文<<
相關文章
1.
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering讀書筆記
2.
Improved Neural Relation Detection for Knowledge Base Question Answering
3.
Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base(筆記)
4.
【PaperReading】Knowledge Graph Embedding Based Question Answering
5.
論文解讀:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Info...
6.
Neural Generative Question Answering筆記
7.
論文解讀:Improved Neural Relation Detection for Knowledge Base Question Answering
8.
Gated Self-Matching Networks for Reading Comprehension and Question Answering論文閱讀筆記
9.
【閱讀筆記】Reasoning With Neural Tensor Networks for Knowledge Base Completion
10.
Question Answering by Reasoning Across Documents with Graph Convolutional Networks
更多相關文章...
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
Scala for循環
-
Scala教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
networks
gated
graph
question
answering
semantics
modeling
knowledge
neural
base
MyBatis教程
Redis教程
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering讀書筆記
2.
Improved Neural Relation Detection for Knowledge Base Question Answering
3.
Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base(筆記)
4.
【PaperReading】Knowledge Graph Embedding Based Question Answering
5.
論文解讀:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Info...
6.
Neural Generative Question Answering筆記
7.
論文解讀:Improved Neural Relation Detection for Knowledge Base Question Answering
8.
Gated Self-Matching Networks for Reading Comprehension and Question Answering論文閱讀筆記
9.
【閱讀筆記】Reasoning With Neural Tensor Networks for Knowledge Base Completion
10.
Question Answering by Reasoning Across Documents with Graph Convolutional Networks
>>更多相關文章<<