tensorflow學習筆記3——MNIST應用篇

MNIST的卷積神經網絡應用

卷積神經網絡的概念

卷積神經網絡(Convolutional Neural Network,CNN)是一種前饋神經網絡,它的人工神經元能夠響應一部分覆蓋範圍內的周圍單元,對於大型圖像處理有出色表現。[2] 它包括卷積層(convolutional layer)和池化層(pooling layer)。git

使用卷積神經網絡來訓練MNIST數據集

import tensorflow as tf
    import numpy as np
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

    trX, trY, teX, teY = mnist.train.images, mnist.train.labels,         mnist.test.images, mnist.test.labels

    trX = trX.reshape(-1, 28, 28, 1)#28*28*1 input image
    teX = teX.reshape(-1, 28, 28, 1)

    X = tf.placeholder("float", [None, 28, 28, 1])
    Y = tf.placeholder("float", [None, 10])
    conv_dropout  = tf.placeholder("float")
    dense_dropout = tf.placeholder("float")
    w1 = tf.Variable(tf.radom_normal([3, 3, 1, 32], stddev=0.01))
    w2 = tf.Variable(tf.radom_normal([3, 3, 32, 64], stddev=0.01))
    w3 = tf.Variable(tf.radom_normal([3, 3, 64, 128], stddev=0.01))
    w4 = tf.Variable(tf.radom_normal([4*4*128, 1024], stddev=0.01))
    wo = tf.Variable(tf.random_normal([1024, 10], stddev=0.01))

    #卷積和池化、dropout
    def conv_and_pool(x, w, step, dropout):
        x = tf.nn.relu(tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME'))
        x = tf.nn.max_pool(x, ksize=[1, step, step, 1], strides=[1, step, step, 1], padding='SAME')
        x = tf.nn.dropout(dropout)
        return x
    #構建模型
    def conv_model(x, w1, w2, w3, w4, wo, dropout, dense_do):
        x = conv_and_pool(x, w1, 2, 0.5)#第一層卷積 
        x = conv_and_pool(x, w2, 2, 0.5)#第二層卷積 
        x = conv_and_pool(x, w3, 2, 0.5)#第三層卷積 

        x = tf.nn.relu(tf.nn.matmul(x, w4))#全鏈接
        x = tf.nn.dropout(x, dense_do)#dropout,防止過擬合

        x = tf.nn.relu(tf.nn.matmul(x, wo))#輸出預測分類
        return x;

    py_x = conv_model(X, w1, w2, w3, w4, wo, conv_dropout, dense_dropout)

    cost =     tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
    train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minize(cost)
    predict_op = tf.argmax(py_x, 1)

    batch_size = 128
    test_size = 256

    #訓練模型和評估模型
    with tf.Sesseion() as sess:
        tf.global_variables_initializer().run()

        for i in range(100):
            training_batch = zip(range(0, len(trX), batch_size),         range(batch_size, len(trX)+1, batch_size))
        for start, end in training_batch:
            sess.run(train_op, feed_dict={X:trX[start:end], Y:trY[start:end], conv_dropout:0.8, dense_dropout:0.5})
        
    test_indices = np.arange(len(txX))
    np.random.shuffle(test_indices)
    test_indices = test_indices[0:test_size]
    print(i, np.mean(np.ragmax(teY[test_indices], axis=1) == sess.run(predict_op, feed_dict={X:teX[test_indices], conv_dropout:1.0, dense_dropout:1.0})))

輸出結果:

0.179688
0.453125
0.671875
0.773438
0.765625
0.789062
0.804688
0.84375
0.796875
0.828125
...
0.953125
0.921875
0.945312
0.9375
0.914062
0.929688
0.953125
0.9375算法

MNIST的循環神經網絡應用

循環神經網絡的概念(RNN,又稱爲遞歸神經網絡)

在傳統的神經網絡模型中,是從輸入層到隱含層再到輸出層,層與層之間是全鏈接的,每層之間的節點是無鏈接的。可是這種普通的神經網絡對於不少問題卻無能無力。例如,你要預測句子的下一個單詞是什麼,通常須要用到前面的單詞,由於一個句子中先後單詞並非獨立的。RNN(Recurrent Neuron Network)是一種對序列數據建模的神經網絡,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式爲網絡會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點再也不無鏈接而是有鏈接的,而且隱藏層的輸入不只包括輸入層的輸出還包括上一時刻隱藏層的輸出。
RNN在天然語言處理領域的如下幾個方向應用得很是成功:網絡

  • 機器翻譯;
  • 語音識別;
  • 圖像描述生成(把RNN和CNN結合,根據圖像的特徵生成描述)
  • 語言模型與文本生成,即利用生成的模型預測下一個單詞的可能性.

使用循環神經網絡(RNN)訓練MNIST數據集

import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    from tensorflow.contrib import rnn
    tf.set_random_seed(1)

    mnist = input_data.read_data_sets('/tmp/data', one_hot=True)
    optimize_op = 0.01
    train_count = 100000
    batch_size  = 128

    #
    n_inputs = 28
    n_steps = 28
    n_hidden_units = 128
    n_classes = 10

    x = tf.placeholder(tf.float32, [None, 28, 28])
    y = tf.placeholder(tf.float32, [None, 10])

    weights = {
        'in': tf.Variable(tf.random_normal([28, 128])),
        'out': tf.Variable(tf.random_normal([128, 10])),
    }

    baises = {
        'in': tf.Variable(tf.constant(0.1, shape=[128, ])),
        'out': tf.Variable(tf.constant(0.1, shape=[10, ])),
    }

    def RNN(X, weights, baises):
        #Xtransform to [128*28, 28]
        X = tf.reshape(X, [-1, 28])
        X_in = tf.matmul(X, weights['in']) + baises['in']
        #[128*28, 128]->vonvert[128, 28, 128]
        X_in = tf.reshape(X_in, [-1, 28, 128])
        lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
        init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
        #dynamic_rnn
        #outputs, final_state = rnn.static_rnn(lstm_cell, X_in, initial_state=init_state)
        outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in,         initial_state=init_state, time_major=False)
        results = tf.matmul(final_state[1], weights['out']) + baises['out']
        return results;

    pred = RNN(x, weights, baises)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
    train_op = tf.train.AdamOptimizer(optimize_op).minimize(cost)

    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        step = 0
        while step * batch_size < train_count:
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            batch_xs = batch_xs.reshape([batch_size, 28, 28])
            sess.run([train_op], feed_dict={
             x: batch_xs,
             y: batch_ys,
             })
        
            if step % 20 == 0:
               print(sess.run(accuracy, feed_dict={x:batch_xs, y:batch_ys,}))
            step += 1

輸出結果:

0.179688
0.453125
0.671875
0.773438
...
0.9375
0.914062
0.929688
0.953125
0.9375dom

MNIST的自編碼網絡實現應用

自編碼網絡的概念

自編碼器是神經網絡的一種,是一種無監督學習方法,使用了反向傳播算法,目標是使輸出=輸入。 自編碼器內部有隱藏層 ,能夠產生編碼表示輸入。自編碼器主要做用在於經過復現輸出而捕捉能夠表明輸入的重要因素,利用中間隱層對輸入的壓縮表達,達到像PCA那樣的找到原始信息主成分的效果。ide

使用自編碼網絡編碼MNIST

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib import rnn
import matplotlib.pyplot as plt
import numpy as np
tf.set_random_seed(1)

mnist = input_data.read_data_sets('/tmp/data', one_hot=True)
learning_rate = 0.01
training_epochs = 20
batch_size  = 256#batch size for once training
display_step = 1

examples_to_show = 10#images to show in view

n_hidden_1 = 256#first hidden layer feature count
n_hidden_2 = 128#second hidden layer feature count
n_input = 784 #input data count


X = tf.placeholder("float", [None, n_input])#input image data


weights = {
     'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
     'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
     'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
     'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
 }
biases = {
     'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
     'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
     'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
     'decoder_b2': tf.Variable(tf.random_normal([n_input])),
 }

def encoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,         weights['encoder_h2']), biases['encoder_b2']))
    return layer_2

def decoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1']))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2']))
    return layer_2

encoder_op = encoder(X)#encoder image data
decoder_op = decoder(encoder_op)#decoder image data學習

y_pred = decoder_op#prediction image data
y_true = X
cost = tf.reduce_mean(tf.pow(y_pred - y_true, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:測試

sess.run(init)
   total_batch = int(mnist.train.num_examples/batch_size)
   for epoch in range(training_epochs):
      for i in range(total_batch):
          batch_xs, batch_ys = mnist.train.next_batch(batch_size)
          _, c = sess.run([optimizer, cost], feed_dict={X:batch_xs})
      if epoch %display_step == 0:
         print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
  print ("Optimization Finished!")
  encode_decode = sess.run(y_pred, feed_dict={X: 
  mnist.test.images[:examples_to_show]})
  
  f, a = plt.subplots(2, 10, figsize=(10, 2))#繪圖比較原始圖片和編碼網絡重建結果
  print ("after plt.subplots")
  for i in range(examples_to_show):
      a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))#測試集
      a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))#重建結果
   f.show()
   plt.draw()

輸出結果:

clipboard.png

相關文章
相關標籤/搜索