【筆記3】用pandas實現矩陣數據格式的推薦算法 (基於用戶的協同)

原書做者使用字典dict實現推薦算法,而且驚歎於18行代碼實現了向量的餘弦夾角公式。python

我用pandas實現相同的公式只要3行。算法

特別說明:本篇筆記是針對矩陣數據,下篇筆記是針對條目數據。json

'''
基於用戶的協同推薦

矩陣數據
'''

import pandas as pd
from io import StringIO
import json

#數據類型一:csv矩陣(用戶-商品)(適用於小數據量)
csv_txt = '''"user","Blues Traveler","Broken Bells","Deadmau5","Norah Jones","Phoenix","Slightly Stoopid","The Strokes","Vampire Weekend"
"Angelica",3.5,2.0,,4.5,5.0,1.5,2.5,2.0
"Bill",2.0,3.5,4.0,,2.0,3.5,,3.0
"Chan",5.0,1.0,1.0,3.0,5,1.0,,
"Dan",3.0,4.0,4.5,,3.0,4.5,4.0,2.0
"Hailey",,4.0,1.0,4.0,,,4.0,1.0
"Jordyn",,4.5,4.0,5.0,5.0,4.5,4.0,4.0
"Sam",5.0,2.0,,3.0,5.0,4.0,5.0,
"Veronica",3.0,,,5.0,4.0,2.5,3.0,'''


#數據類型二:json數據(用戶、商品、打分)
json_txt = '''{"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
                      "Norah Jones": 4.5, "Phoenix": 5.0,
                      "Slightly Stoopid": 1.5,
                      "The Strokes": 2.5, "Vampire Weekend": 2.0},
         
         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
                 "Deadmau5": 4.0, "Phoenix": 2.0,
                 "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
         
         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
                  "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
                  "Slightly Stoopid": 1.0},
         
         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
                 "Deadmau5": 4.5, "Phoenix": 3.0,
                 "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                 "Vampire Weekend": 2.0},
         
         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
                    "Norah Jones": 4.0, "The Strokes": 4.0,
                    "Vampire Weekend": 1.0},
         
         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0,
                     "Norah Jones": 5.0, "Phoenix": 5.0,
                     "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                     "Vampire Weekend": 4.0},
         
         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
                 "Norah Jones": 3.0, "Phoenix": 5.0,
                 "Slightly Stoopid": 4.0, "The Strokes": 5.0},
         
         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
                      "Phoenix": 4.0, "Slightly Stoopid": 2.5,
                      "The Strokes": 3.0}
}'''


df = None

#方式一:加載csv數據
def load_csv_txt():
    global df
    df = pd.read_csv(StringIO(csv_txt), header=0, index_col="user")

#方式二:加載json數據(把json讀成矩陣)
def load_json_txt():
    global df
    df = pd.read_json(json_txt, orient='index')
    
    
#測試:讀取數據
load_csv_txt()
#load_json_txt()



def build_xy(user_name1, user_name2):
    #df2 = df.ix[[user_name1, user_name2]].dropna(axis=1)
    #return df2.ix[user_name1], df2.ix[user_name2]
    
    bool_array = df.ix[user_name1].notnull() & df.ix[user_name2].notnull()
    return df.ix[user_name1, bool_array], df.ix[user_name2, bool_array]


#曼哈頓距離
def manhattan(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    return sum(abs(x - y))
    
#歐幾里德距離
def euclidean(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    return sum((x - y)**2)**0.5
    
#閔可夫斯基距離
def minkowski(user_name1, user_name2, r):
    x, y = build_xy(user_name1, user_name2)
    return sum(abs(x - y)**r)**(1/r)
    
#皮爾遜相關係數
def pearson(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    mean1, mean2 = x.mean(), y.mean()
    #分母
    denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
    return [sum((x-mean1)*(y-mean2))/denominator, 0][denominator == 0]
    

#餘弦類似度(數據的稀疏性問題,在文本挖掘中應用得較多)
def cosine(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    #分母
    denominator = (sum(x*x)*sum(y*y))**0.5
    return [sum(x*y)/denominator, 0][denominator == 0]

metric_funcs = {
    'manhattan': manhattan,
    'euclidean': euclidean,
    'minkowski': minkowski,
    'pearson': pearson,
    'cosine': cosine
}

#df.ix[["Angelica","Bill"]].dropna(axis=1)
print(manhattan("Angelica","Bill"))

#計算最近的鄰居
def computeNearestNeighbor(user_name, metric='pearson', k=3, r=2):
    '''
    metric: 度量函數
    k:      返回k個鄰居
    r:      閔可夫斯基距離專用
    
    返回:pd.Series,其中index是鄰居名稱,values是距離
    '''
    if metric in ['manhattan', 'euclidean']:
        return df.drop(user_name).index.to_series().apply(metric_funcs[metric], args=(user_name,)).nsmallest(k)
    elif metric in ['minkowski']:
        return df.drop(user_name).index.to_series().apply(metric_funcs[metric], args=(user_name, r,)).nsmallest(k)
    elif metric in ['pearson', 'cosine']:
        return df.drop(user_name).index.to_series().apply(metric_funcs[metric], args=(user_name,)).nlargest(k)
    
print(computeNearestNeighbor('Hailey', metric='pearson'))

#向給定用戶推薦(返回:pd.Series)
def recommend(user_name):
    # 找到距離最近的用戶名
    nearest_username = computeNearestNeighbor(user_name).index[0]
    
    # 找出鄰居評價過、但本身不曾評價的樂隊(或商品)
    # 結果:index是商品名稱,values是評分
    return df.ix[nearest_username, df.ix[user_name].isnull() & df.ix[nearest_username].notnull()].sort_values()


#爲Hailey作推薦
print(recommend('Hailey'))




#向給定用戶推薦
def recommend2(user_name, metric='pearson', k=3, n=5, r=2):
    '''
    metric: 度量函數
    k:      根據k個最近鄰居,協同推薦
    r:      閔可夫斯基距離專用
    n:      推薦的商品數目
    
    返回:pd.Series,其中index是商品名稱,values是加權評分
    '''
    # 找到距離最近的k個鄰居
    nearest_neighbors = computeNearestNeighbor(user_name, metric='pearson', k=k, r=r)
    
    # 計算權值
    if metric in ['manhattan', 'euclidean', 'minkowski']: # 距離越小,越相似
        nearest_neighbors = 1 / nearest_neighbors # 因此,取倒數(或者別的減函數,如:y=2**-x)
    elif metric in ['pearson', 'cosine']:                 # 距離越大,越相似
        pass
        
    nearest_neighbors = nearest_neighbors / nearest_neighbors.sum() #已經變爲權值(pd.Series)
    
    # 逐個鄰居找出其評價過、但本身不曾評價的樂隊(或商品)的評分,並乘以權值
    neighbors_rate_with_weight = []
    for neighbor_name in nearest_neighbors.index:
        # 每一個結果:pd.Series,其中index是商品名稱,values是評分(已乘權值)
        neighbors_rate_with_weight.append(df.ix[neighbor_name, df.ix[user_name].isnull() & df.ix[neighbor_name].notnull()] * nearest_neighbors[neighbor_name])

    # 把鄰居們的加權評分拼接成pd.DataFrame,按列累加,取最大的前n個商品的評分
    return pd.concat(neighbors_rate_with_weight, axis=1).sum(axis=1, skipna=True).nlargest(n)
    

#爲Hailey作推薦
print(recommend2('Hailey', metric='manhattan', k=3, n=5))

#爲Hailey作推薦
print(recommend2('Hailey', metric='euclidean', k=3, n=5, r=2))

#爲Hailey作推薦
print(recommend2('Hailey', metric='pearson', k=1, n=5))
相關文章
相關標籤/搜索