import java.util.Iterator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.storage.StorageLevel; import scala.Tuple2; import java.util.Arrays; import java.util.Iterator; import java.util.Scanner; public class PersisitDemo { public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setMaster("local[3]").setAppName("wordcount").set("spark.testing.memory", "2147480000"); JavaSparkContext ctx = new JavaSparkContext(sparkConf); // ctx.setCheckpointDir("file:///d:/checkpoint"); final JavaRDD<String> lines = ctx.textFile("words.txt").repartition(2); JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public Iterator<String> call(String s) throws Exception { long th=Thread.currentThread().getId(); System.out.println("flatMap... thread id:"+th); return Arrays.asList(s.split(" ")).iterator(); } }).repartition(2) //.persist(StorageLevel.MEMORY_ONLY()); .cache(); //使用了緩存第二次調用的時候不會再次執行 while(true){ Scanner sc = new Scanner(System.in); String line = sc.next(); if(line.equals("END")){ break; } JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() { @Override public Tuple2<String, Integer> call(String s) throws Exception { long th=Thread.currentThread().getId(); System.out.println("mapToPair... thread id:"+th); return new Tuple2<String, Integer>(s, 1); } }).repartition(2); JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer integer, Integer integer2) throws Exception { long th=Thread.currentThread().getId(); System.out.println("reduceByKey... thread id:"+th); return integer + integer2; } }).repartition(2); //counts.saveAsTextFile(args[1]); counts.foreach(x->System.out.println(x)); // lines.unpersist(); } ctx.stop(); } }
import java.util.Iterator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.storage.StorageLevel; import scala.Tuple2; import java.util.Arrays; import java.util.Iterator; import java.util.Scanner; public class CheckpointDemo { public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setMaster("local").setAppName("wordcount").set("spark.testing.memory", "2147480000"); JavaSparkContext ctx = new JavaSparkContext(sparkConf); ctx.setCheckpointDir("file:///d:/checkpoint"); final JavaRDD<String> lines = ctx.textFile("words.txt"); JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public Iterator<String> call(String s) throws Exception { System.out.println("flatMap..."); return Arrays.asList(s.split(" ")).iterator(); } }); JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() { @Override public Tuple2<String, Integer> call(String s) throws Exception { System.out.println("mapToPair..."); return new Tuple2<String, Integer>(s, 1); } }); ones.checkpoint(); //設置檢查點 斬斷依賴 JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer integer, Integer integer2) throws Exception { System.out.println("reduceByKey..."); return integer + integer2; } }); System.out.println(counts.toDebugString()); // counts.saveAsTextFile(args[1]); counts.foreach(x->System.out.println(x)); System.out.println("after action:" + counts.toDebugString()); ctx.stop(); } }
import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; import java.util.List; import java.util.Scanner; import org.apache.hive.com.esotericsoftware.kryo.serializers.JavaSerializer; import org.apache.spark.HashPartitioner; import org.apache.spark.Partitioner; import org.apache.spark.SparkConf; import org.apache.spark.api.java.AbstractJavaRDDLike; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.partial.BoundedDouble; import org.apache.spark.partial.PartialResult; import org.apache.spark.storage.StorageLevel; import scala.Tuple2; //JavaPairRDD<String, Integer> results = mapRdd.reduceByKey((x, y)->x+y); public class CountApiTest { public static void main(String[] xx){ SparkConf conf = new SparkConf(); conf.setMaster("local"); conf.setAppName("Count API"); conf.set("spark.testing.memory", "2147480000"); // conf.set("spark.default.parallelism", "4"); JavaSparkContext ctx = new JavaSparkContext(conf); //建立RDD:1)經過讀取外部存儲 ----- 集羣環境使用 2)經過內存中的集合 List<Integer> list = new ArrayList<Integer>(); for(int i = 0; i < 10000; i++){ list.add(i); } JavaRDD<Integer> rdd1 = ctx.parallelize(list, 2); JavaRDD<Integer> rdd2 = rdd1.union(rdd1).union(rdd1).union(rdd1); //System.out.println(rdd2.count()); //計算並集後的總數 PartialResult<BoundedDouble> result = rdd2.countApprox(450);//1000, 300 2秒內跑完給結果,若沒有完,也要返回結果 System.out.println(result.initialValue().mean()); System.out.println(result.initialValue().low()); System.out.println(result.initialValue().high()); System.out.println(result.initialValue().confidence()); //自信程度 // 40000.0 使用2000 // 40000.0 // 40000.0 // 1.0 // 40000.6 使用450 // 39696.95761248283 // 40304.242387517166 // 0.95 //0.01 0.1 偏移度的大體跑完了的任務 執行的更快 // System.out.println(rdd2.countApproxDistinct(0.01)); //9945 } }