# 安裝 git $ sudo apt-get install -y git # 安裝 cmake $ sudo apt-get install -y cmake # 安裝 python-pip $ sudo apt-get install -y python-pip
安裝face_recognition這個以前須要先安裝編譯dlibpython
# 編譯dlib前先安裝 boost $ sudo apt-get install libboost-all-dev # 開始編譯dlib # 克隆dlib源代碼 $ git clone https://github.com/davisking/dlib.git $ cd dlib $ mkdir build $ cd build $ cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1 $ cmake --build .(注意中間有個空格) $ cd .. $ python setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA
# 安裝 face_recognition $ pip install face_recognition # 安裝face_recognition過程當中會自動安裝 numpy、scipy 等
環境搭建完成後,在終端輸入 face_recognition 命令查看是否成功git
known_people文件夾下有babe、成龍、容祖兒的照片github
unknown_pic文件夾下是要識別的圖片,其中韓紅是機器不認識的ubuntu
識別成功!!!數組
# filename : find_faces_in_picture.py # -*- coding: utf-8 -*- # 導入pil模塊 ,可用命令安裝 apt-get install python-Imaging from PIL import Image # 導入face_recogntion模塊,可用命令安裝 pip install face_recognition import face_recognition # 將jpg文件加載到numpy 數組中 image = face_recognition.load_image_file("/opt/face/unknown_pic/all_star.jpg") # 使用默認的給予HOG模型查找圖像中全部人臉 # 這個方法已經至關準確了,但仍是不如CNN模型那麼準確,由於沒有使用GPU加速 # 另請參見: find_faces_in_picture_cnn.py face_locations = face_recognition.face_locations(image) # 使用CNN模型 # face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn") # 打印:我從圖片中找到了 多少 張人臉 print("I found {} face(s) in this photograph.".format(len(face_locations))) # 循環找到的全部人臉 for face_location in face_locations: # 打印每張臉的位置信息 top, right, bottom, left = face_location print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) # 指定人臉的位置信息,而後顯示人臉圖片 face_image = image[top:bottom, left:right] pil_image = Image.fromarray(face_image) pil_image.show()
以下圖爲用於識別的圖片ide
# 執行python文件 $ python find_faces_in_picture.py
從圖片中識別出7張人臉,並顯示出來,以下圖ui
# filename : find_facial_features_in_picture.py # -*- coding: utf-8 -*- # 導入pil模塊 ,可用命令安裝 apt-get install python-Imaging from PIL import Image, ImageDraw # 導入face_recogntion模塊,可用命令安裝 pip install face_recognition import face_recognition # 將jpg文件加載到numpy 數組中 image = face_recognition.load_image_file("biden.jpg") #查找圖像中全部面部的全部面部特徵 face_landmarks_list = face_recognition.face_landmarks(image) print("I found {} face(s) in this photograph.".format(len(face_landmarks_list))) for face_landmarks in face_landmarks_list: #打印此圖像中每一個面部特徵的位置 facial_features = [ 'chin', 'left_eyebrow', 'right_eyebrow', 'nose_bridge', 'nose_tip', 'left_eye', 'right_eye', 'top_lip', 'bottom_lip' ] for facial_feature in facial_features: print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature])) #讓咱們在圖像中描繪出每一個人臉特徵! pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image) for facial_feature in facial_features: d.line(face_landmarks[facial_feature], width=5) pil_image.show()
自動識別出人臉特徵(輪廓)this
# filename : recognize_faces_in_pictures.py # -*- conding: utf-8 -*- # 導入face_recogntion模塊,可用命令安裝 pip install face_recognition import face_recognition #將jpg文件加載到numpy數組中 babe_image = face_recognition.load_image_file("/opt/face/known_people/babe.jpeg") Rong_zhu_er_image = face_recognition.load_image_file("/opt/face/known_people/Rong zhu er.jpg") unknown_image = face_recognition.load_image_file("/opt/face/unknown_pic/babe2.jpg") #獲取每一個圖像文件中每一個面部的面部編碼 #因爲每一個圖像中可能有多個面,因此返回一個編碼列表。 #可是因爲我知道每一個圖像只有一個臉,我只關心每一個圖像中的第一個編碼,因此我取索引0。 babe_face_encoding = face_recognition.face_encodings(babe_image)[0] Rong_zhu_er_face_encoding = face_recognition.face_encodings(Rong_zhu_er_image)[0] unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0] known_faces = [ babe_face_encoding, Rong_zhu_er_face_encoding ] #結果是True/false的數組,未知面孔known_faces陣列中的任何人相匹配的結果 results = face_recognition.compare_faces(known_faces, unknown_face_encoding) print("這個未知面孔是 Babe 嗎? {}".format(results[0])) print("這個未知面孔是 容祖兒 嗎? {}".format(results[1])) print("這個未知面孔是 咱們從未見過的新面孔嗎? {}".format(not True in results))
顯示結果下如圖編碼
# filename : digital_makeup.py # -*- coding: utf-8 -*- # 導入pil模塊 ,可用命令安裝 apt-get install python-Imaging from PIL import Image, ImageDraw # 導入face_recogntion模塊,可用命令安裝 pip install face_recognition import face_recognition #將jpg文件加載到numpy數組中 image = face_recognition.load_image_file("biden.jpg") #查找圖像中全部面部的全部面部特徵 face_landmarks_list = face_recognition.face_landmarks(image) for face_landmarks in face_landmarks_list: pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image, 'RGBA') #讓眉毛變成了一場噩夢 d.polygon(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 128)) d.polygon(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 128)) d.line(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 150), width=5) d.line(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 150), width=5) #光澤的嘴脣 d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128)) d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128)) d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), width=8) d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), width=8) #閃耀眼睛 d.polygon(face_landmarks['left_eye'], fill=(255, 255, 255, 30)) d.polygon(face_landmarks['right_eye'], fill=(255, 255, 255, 30)) #塗一些眼線 d.line(face_landmarks['left_eye'] + [face_landmarks['left_eye'][0]], fill=(0, 0, 0, 110), width=6) d.line(face_landmarks['right_eye'] + [face_landmarks['right_eye'][0]], fill=(0, 0, 0, 110), width=6) pil_image.show()
美顏先後對好比下圖code
本文若是對你有幫助請打賞($ _ $) 。 你的打賞是對我最大的確定!!!