linux socket編程,不限於linux,一切皆socket

「一切皆Socket!」linux

話雖些許誇張,可是事實也是,如今的網絡編程幾乎都是用的socket。c++

——有感於實際編程和開源項目研究。web

咱們深諳信息交流的價值,那網絡中進程之間如何通訊,如咱們天天打開瀏覽器瀏覽網頁時,瀏覽器的進程怎麼與web服務器通訊的?當你用QQ聊天時,QQ進程怎麼與服務器或你好友所在的QQ進程通訊?這些都得靠socket?那什麼是socket?socket的類型有哪些?還有socket的基本函數,這些都是本文想介紹的。本文的主要內容以下:編程

一、網絡中進程之間如何通訊?

二、Socket是什麼?

三、socket的基本操做

  3.一、socket()函數瀏覽器

3.二、bind()函數服務器

3.三、listen()、connect()函數網絡

3.四、accept()函數架構

3.五、read()、write()函數等併發

3.六、close()函數dom

四、socket中TCP的三次握手創建鏈接詳解

五、socket中TCP的四次握手釋放鏈接詳解

六、一個例子(實踐一下)

七、留下一個問題,歡迎你們回帖回答!!!


若是以爲看完文章有所收穫的話,能夠關注我一下哦
知乎:禿頂之路
b站:linux亦有歸途
天天都會更新咱們的公開課錄播以及編程乾貨和大廠面經
或者直接點擊連接
c/c++ linux服務器開發高級架構師
來課堂上跟咱們講師面對面交流
須要大廠面經跟學習大綱的小夥伴能夠加羣973961276獲取


一、網絡中進程之間如何通訊?

本地的進程間通訊(IPC)有不少種方式,但能夠總結爲下面4類:

消息傳遞(管道、FIFO、消息隊列)同步(互斥量、條件變量、讀寫鎖、文件和寫記錄鎖、信號量)共享內存(匿名的和具名的)遠程過程調用(Solaris門和Sun RPC)

但這些都不是本文的主題!咱們要討論的是網絡中進程之間如何通訊?首要解決的問題是如何惟一標識一個進程,不然通訊無從談起!在本地能夠經過進程PID來惟一標識一個進程,可是在網絡中這是行不通的。其實TCP/IP協議族已經幫咱們解決了這個問題,網絡層的「ip地址」能夠惟一標識網絡中的主機,而傳輸層的「協議+端口」能夠惟一標識主機中的應用程序(進程)。這樣利用三元組(ip地址,協議,端口)就能夠標識網絡的進程了,網絡中的進程通訊就能夠利用這個標誌與其它進程進行交互。

使用TCP/IP協議的應用程序一般採用應用編程接口:UNIX BSD的套接字(socket)和UNIX System V的TLI(已經被淘汰),來實現網絡進程之間的通訊。就目前而言,幾乎全部的應用程序都是採用socket,而如今又是網絡時代,網絡中進程通訊是無處不在,這就是我爲何說「一切皆socket」。

二、什麼是Socket?

上面咱們已經知道網絡中的進程是經過socket來通訊的,那什麼是socket呢?socket起源於Unix,而Unix/Linux基本哲學之一就是「一切皆文件」,均可以用「打開open –> 讀寫write/read –> 關閉close」模式來操做。個人理解就是Socket就是該模式的一個實現,socket便是一種特殊的文件,一些socket函數就是對其進行的操做(讀/寫IO、打開、關閉),這些函數咱們在後面進行介紹。

socket一詞的起源在組網領域的首次使用是在1970年2月12日發佈的文獻IETF RFC33中發現的,撰寫者爲Stephen Carr、Steve Crocker和Vint Cerf。根據美國計算機歷史博物館的記載,Croker寫道:「命名空間的元素均可稱爲套接字接口。一個套接字接口構成一個鏈接的一端,而一個鏈接可徹底由一對套接字接口規定。」計算機歷史博物館補充道:「這比BSD的套接字接口定義早了大約12年。」

三、socket的基本操做

既然socket是「open—write/read—close」模式的一種實現,那麼socket就提供了這些操做對應的函數接口。下面以TCP爲例,介紹幾個基本的socket接口函數。

3.一、socket()函數

int socket(int domain, int type, int protocol);

socket函數對應於普通文件的打開操做。普通文件的打開操做返回一個文件描述字,而socket()用於建立一個socket描述符(socket descriptor),它惟一標識一個socket。這個socket描述字跟文件描述字同樣,後續的操做都有用到它,把它做爲參數,經過它來進行一些讀寫操做。

正如能夠給fopen的傳入不一樣參數值,以打開不一樣的文件。建立socket的時候,也能夠指定不一樣的參數建立不一樣的socket描述符,socket函數的三個參數分別爲:

domain:即協議域,又稱爲協議族(family)。經常使用的協議族有,AF_INET、AF_INET六、AF_LOCAL(或稱AF_UNIX,Unix域socket)、AF_ROUTE等等。協議族決定了socket的地址類型,在通訊中必須採用對應的地址,如AF_INET決定了要用ipv4地址(32位的)與端口號(16位的)的組合、AF_UNIX決定了要用一個絕對路徑名做爲地址。type:指定socket類型。經常使用的socket類型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等(socket的類型有哪些?)。protocol:故名思意,就是指定協議。經常使用的協議有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它們分別對應TCP傳輸協議、UDP傳輸協議、STCP傳輸協議、TIPC傳輸協議(這個協議我將會單獨開篇討論!)。

注意:並非上面的type和protocol能夠隨意組合的,如SOCK_STREAM不能夠跟IPPROTO_UDP組合。當protocol爲0時,會自動選擇type類型對應的默認協議。

當咱們調用socket建立一個socket時,返回的socket描述字它存在於協議族(address family,AF_XXX)空間中,但沒有一個具體的地址。若是想要給它賦值一個地址,就必須調用bind()函數,不然就當調用connect()、listen()時系統會自動隨機分配一個端口。

3.二、bind()函數

正如上面所說bind()函數把一個地址族中的特定地址賦給socket。例如對應AF_INET、AF_INET6就是把一個ipv4或ipv6地址和端口號組合賦給socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函數的三個參數分別爲:

sockfd:即socket描述字,它是經過socket()函數建立了,惟一標識一個socket。bind()函數就是將給這個描述字綁定一個名字。addr:一個const struct sockaddr
*指針,指向要綁定給sockfd的協議地址。這個地址結構根據地址建立socket時的地址協議族的不一樣而不一樣,如ipv4對應的是:struct sockaddr_in { sa_family_t sin_family; /* address family: AF_INET */ in_port_t sin_port; /* port in network byte order */ struct in_addr sin_addr; /* internet address */ }; /* Internet address. */ struct in_addr { uint32_t s_addr; /* address in network byte order */ }; ipv6對應的是: struct sockaddr_in6 { sa_family_t sin6_family; /* AF_INET6 */ in_port_t sin6_port; /* port number */ uint32_t sin6_flowinfo; /* IPv6 flow information */ struct in6_addr sin6_addr; /* IPv6 address */ uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */ }; struct in6_addr { unsigned char s6_addr[16]; /* IPv6 address */ }; Unix域對應的是: #define UNIX_PATH_MAX 108 struct sockaddr_un { sa_family_t sun_family; /* AF_UNIX */ char sun_path[UNIX_PATH_MAX]; /* pathname */ };

addrlen:對應的是地址的長度。

一般服務器在啓動的時候都會綁定一個衆所周知的地址(如ip地址+端口號),用於提供服務,客戶就能夠經過它來接連服務器;而客戶端就不用指定,有系統自動分配一個端口號和自身的ip地址組合。這就是爲何一般服務器端在listen以前會調用bind(),而客戶端就不會調用,而是在connect()時由系統隨機生成一個。

網絡字節序與主機字節序主機字節序就是咱們日常說的大端和小端模式:不一樣的CPU有不一樣的字節序類型,這些字節序是指整數在內存中保存的順序,這個叫作主機序。引用標準的Big-Endian和Little-Endian的定義以下:  
a) Little-Endian就是低位字節排放在內存的低地址端,高位字節排放在內存的高地址端。  
b) Big-Endian就是高位字節排放在內存的低地址端,低位字節排放在內存的高地址端。
網絡字節序:4個字節的32 bit值如下面的次序傳輸:首先是0~7bit,其次8~15bit,而後16~23bit,最後是24~31bit。這種傳輸次序稱做大端字節序。因爲TCP/IP首部中全部的二進制整數在網絡中傳輸時都要求以這種次序,所以它又稱做網絡字節序。字節序,顧名思義字節的順序,就是大於一個字節類型的數據在內存中的存放順序,一個字節的數據沒有順序的問題了。因此:在將一個地址綁定到socket的時候,請先將主機字節序轉換成爲網絡字節序,而不要假定主機字節序跟網絡字節序同樣使用的是Big-Endian。因爲這個問題曾引起過血案!公司項目代碼中因爲存在這個問題,致使了不少莫名其妙的問題,因此請謹記對主機字節序不要作任何假定,務必將其轉化爲網絡字節序再賦給socket。

3.三、listen()、connect()函數

若是做爲一個服務器,在調用socket()、bind()以後就會調用listen()來監聽這個socket,若是客戶端這時調用connect()發出鏈接請求,服務器端就會接收到這個請求。

int listen(int sockfd, int backlog); int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函數的第一個參數即爲要監聽的socket描述字,第二個參數爲相應socket能夠排隊的最大鏈接個數。socket()函數建立的socket默認是一個主動類型的,listen函數將socket變爲被動類型的,等待客戶的鏈接請求。

connect函數的第一個參數即爲客戶端的socket描述字,第二參數爲服務器的socket地址,第三個參數爲socket地址的長度。客戶端經過調用connect函數來創建與TCP服務器的鏈接。

3.四、accept()函數

TCP服務器端依次調用socket()、bind()、listen()以後,就會監聽指定的socket地址了。TCP客戶端依次調用socket()、connect()以後就想TCP服務器發送了一個鏈接請求。TCP服務器監聽到這個請求以後,就會調用accept()函數取接收請求,這樣鏈接就創建好了。以後就能夠開始網絡I/O操做了,即類同於普通文件的讀寫I/O操做。

int accept(int sockfd, struct sockaddr addr, socklen_t addrlen);

accept函數的第一個參數爲服務器的socket描述字,第二個參數爲指向struct sockaddr *的指針,用於返回客戶端的協議地址,第三個參數爲協議地址的長度。若是accpet成功,那麼其返回值是由內核自動生成的一個全新的描述字,表明與返回客戶的TCP鏈接。

注意:accept的第一個參數爲服務器的socket描述字,是服務器開始調用socket()函數生成的,稱爲監聽socket描述字;而accept函數返回的是已鏈接的socket描述字。一個服務器一般一般僅僅只建立一個監聽socket描述字,它在該服務器的生命週期內一直存在。內核爲每一個由服務器進程接受的客戶鏈接建立了一個已鏈接socket描述字,當服務器完成了對某個客戶的服務,相應的已鏈接socket描述字就被關閉。

3.五、read()、write()等函數

萬事具有隻欠東風,至此服務器與客戶已經創建好鏈接了。能夠調用網絡I/O進行讀寫操做了,即實現了網咯中不一樣進程之間的通訊!網絡I/O操做有下面幾組:

read()/write()recv()/send()readv()/writev()recvmsg()/sendmsg()recvfrom()/sendto()

我推薦使用recvmsg()/sendmsg()函數,這兩個函數是最通用的I/O函數,實際上能夠把上面的其它函數都替換成這兩個函數。它們的聲明以下:

read函數是負責從fd中讀取內容.當讀成功時,read返回實際所讀的字節數,若是返回的值是0表示已經讀到文件的結束了,小於0表示出現了錯誤。若是錯誤爲EINTR說明讀是由中斷引發的,若是是ECONNREST表示網絡鏈接出了問題。

write函數將buf中的nbytes字節內容寫入文件描述符fd.成功時返回寫的字節數。失敗時返回-1,並設置errno變量。 在網絡程序中,當咱們向套接字文件描述符寫時有倆種可能。1)write的返回值大於0,表示寫了部分或者是所有的數據。2)返回的值小於0,此時出現了錯誤。咱們要根據錯誤類型來處理。若是錯誤爲EINTR表示在寫的時候出現了中斷錯誤。若是爲EPIPE表示網絡鏈接出現了問題(對方已經關閉了鏈接)。

其它的我就不一一介紹這幾對I/O函數了,具體參見man文檔或者baidu、Google,下面的例子中將使用到send/recv。

3.六、close()函數

在服務器與客戶端創建鏈接以後,會進行一些讀寫操做,完成了讀寫操做就要關閉相應的socket描述字,比如操做完打開的文件要調用fclose關閉打開的文件。

include <unistd.h> int close(int fd);

close一個TCP socket的缺省行爲時把該socket標記爲以關閉,而後當即返回到調用進程。該描述字不能再由調用進程使用,也就是說不能再做爲read或write的第一個參數。

注意:close操做只是使相應socket描述字的引用計數-1,只有當引用計數爲0的時候,纔會觸發TCP客戶端向服務器發送終止鏈接請求。

四、socket中TCP的三次握手創建鏈接詳解

咱們知道tcp創建鏈接要進行「三次握手」,即交換三個分組。大體流程以下:

客戶端向服務器發送一個SYN J服務器向客戶端響應一個SYN K,並對SYN J進行確認ACK J+1客戶端再想服務器發一個確認ACK K+1

只有就完了三次握手,可是這個三次握手發生在socket的那幾個函數中呢?請看下圖:

圖一、socket中發送的TCP三次握手

從圖中能夠看出,當客戶端調用connect時,觸發了鏈接請求,向服務器發送了SYN J包,這時connect進入阻塞狀態;服務器監聽到鏈接請求,即收到SYN J包,調用accept函數接收請求向客戶端發送SYN K ,ACK J+1,這時accept進入阻塞狀態;客戶端收到服務器的SYN K ,ACK J+1以後,這時connect返回,並對SYN K進行確認;服務器收到ACK K+1時,accept返回,至此三次握手完畢,鏈接創建。

總結:客戶端的connect在三次握手的第二個次返回,而服務器端的accept在三次握手的第三次返回。

五、socket中TCP的四次握手釋放鏈接詳解

上面介紹了socket中TCP的三次握手創建過程,及其涉及的socket函數。如今咱們介紹socket中的四次握手釋放鏈接的過程,請看下圖:

圖二、socket中發送的TCP四次握手

圖示過程以下:

某個應用進程首先調用close主動關閉鏈接,這時TCP發送一個FIN M;另外一端接收到FIN M以後,執行被動關閉,對這個FIN進行確認。它的接收也做爲文件結束符傳遞給應用進程,由於FIN的接收意味着應用進程在相應的鏈接上再也接收不到額外數據;一段時間以後,接收到文件結束符的應用進程調用close關閉它的socket。這致使它的TCP也發送一個FIN N;接收到這個FIN的源發送端TCP對它進行確認。

這樣每一個方向上都有一個FIN和ACK。

六、一個例子(實踐一下)

說了這麼多了,動手實踐一下。下面編寫一個簡單的服務器、客戶端(使用TCP)——服務器端一直監聽本機的6666號端口,若是收到鏈接請求,將接收請求並接收客戶端發來的消息;客戶端與服務器端創建鏈接併發送一條消息。

服務器端代碼:

服務器端

客戶端代碼:

客戶端

固然上面的代碼很簡單,也有不少缺點,這就只是簡單的演示socket的基本函數使用。其實無論有多複雜的網絡程序,都使用的這些基本函數。上面的服務器使用的是迭代模式的,即只有處理完一個客戶端請求才會去處理下一個客戶端的請求,這樣的服務器處理能力是很弱的,現實中的服務器都須要有併發處理能力!爲了須要併發處理,服務器須要fork()一個新的進程或者線程去處理請求等。

七、動動手

留下一個問題,歡迎你們回帖回答!!!是否熟悉Linux下網絡編程?如熟悉,編寫以下程序完成以下功能:

服務器端:

接收地址192.168.100.2的客戶端信息,如信息爲「Client Query」,則打印「Receive Query」

客戶端:

向地址192.168.100.168的服務器端順序發送信息「Client Query test」,「Cleint Query」,「Client Query Quit」,而後退出。

題目中出現的ip地址能夠根據實際狀況定。

——本文只是介紹了簡單的socket編程。

更爲複雜的須要本身繼續深刻。

(unix domain socket)使用udp發送>=128K的消息會報ENOBUFS的錯誤(一個實際socket編程中遇到的問題,但願對你有幫助)


都看到這裏了,不妨關注我,後續會持續更新編程相關學習經驗,但願對你們能有所幫助

相關文章
相關標籤/搜索