原題連接在這裏:https://leetcode.com/problems/maximum-subarray/html
題目:post
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.url
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.spa
題解:.net
採用的是DP解法. 把原有問題拆成小問題. maxSubArray(int [] nums, int i). 表示到 [0,i]段最大的sub array. 前提是包括 i 元素.code
maxSubArray(nums, i) = nums[i] + maxSubArray(nums, i-1) > 0 ? maxSubArray(nums, i-1) : 0.htm
同時維護全局最大值.blog
歷史信息就是local[i-1] 和 global[i-1], 更新當前信息時先更新局部最優.leetcode
local[i] = Math.max(local[i-1]+nums[i], nums[i]), 有可能local[i-1]是負數,就直接取nums[i], 而後更新全局最優.get
global[i] = Math.max(lcoal[i], global[i-1]), 要麼是原來的全局最優,要麼是局部最優,此時能涵蓋全部解。若是全局最優不包含當前值,那麼會被維護在global[i-1]中,若包含當前值,那麼就是local[i].
Note: local, global的初始化是nums[0]. 不能初始化成0, 而後從i=1開始,好比[-1], Output:0, Expected:-1, 這種corner case 就會出錯.
Time Complexity: O(n).n = nums.length.
Space: O(1).
AC Java:
1 public class Solution { 2 public int maxSubArray(int[] nums) { 3 if(nums == null || nums.length ==0){ 4 return 0; 5 } 6 int global = nums[0]; 7 int local = nums[0]; 8 for(int i = 1; i< nums.length; i++){ 9 local = Math.max(local + nums[i], nums[i]); 10 global = Math.max(global, local); 11 } 12 return global; 13 } 14 }
相似Maximum Product Subarray, House Robber, Best Time to Buy and Sell Stock., Longest Turbulent Subarray.
Reference: http://blog.csdn.net/linhuanmars/article/details/21314059