軟件開發中,常常會遇到下邊幾種狀況;中斷中處理部分任務,後續耗時操做須要轉移到中斷外執行,不然致使中斷不能及時響應後續任務;回調函數中處理部分任務,而後由其餘模塊處理其餘任務。在有OS支持時,可經過信號量、事件、消息隊列等方法去實現。在無OS支持時,常見的方法有經過設置狀態標誌、由主循環的任務去接着執行,這種方法在基於狀態機的框架比較常見,缺點也是顯而易見的,代碼可讀性較差,中斷中設置了一堆狀態,而後再去找相關的狀態機後續操做,有時候跳轉幾回就暈了,後續業務邏輯變化,升級也比較困難。
本文提出一種基於隊列的調度器,分割先後臺任務平面,配合分層、封裝等方法,實現複雜的操做。主要參考了Nodic公司的SDK框架
初始化一個任務隊列,任務隊列每一項包含參數、任務處理函數句柄;中斷/回調等後臺任務,負責保存數據,同時構造後續操做的任務結構體入隊列,經過級聯的方法實現複雜的邏輯。調度執行程序按順序取隊列中的元素,執行任務處理函數。ide
頭文件: m_scheduler.h函數
#ifndef M_SCHEDULER_H__ #define M_SCHEDULER_H__ #include <stdint.h> #include <stdbool.h> #ifdef __cplusplus extern "C" { #endif #define M_SCHED_EVENT_HEADER_SIZE 8 /**< Size of m_scheduler.event_header_t (only for use inside M_SCHED_BUF_SIZE()). */ /** @defgroup ERRORS_BASE Error Codes Base number definitions * @{ */ #define ERROR_BASE_NUM (0x0) ///< Global error base #define ERROR_SDM_BASE_NUM (0x1000) ///< SDM error base #define ERROR_SOC_BASE_NUM (0x2000) ///< SoC error base #define ERROR_STK_BASE_NUM (0x3000) ///< STK error base /** @} */ #define SUCCESS (ERROR_BASE_NUM + 0) ///< Successful command #define ERROR_SVC_HANDLER_MISSING (ERROR_BASE_NUM + 1) ///< SVC handler is missing #define ERROR_SOFTDEVICE_NOT_ENABLED (ERROR_BASE_NUM + 2) ///< SoftDevice has not been enabled #define ERROR_INTERNAL (ERROR_BASE_NUM + 3) ///< Internal Error #define ERROR_NO_MEM (ERROR_BASE_NUM + 4) ///< No Memory for operation #define ERROR_NOT_FOUND (ERROR_BASE_NUM + 5) ///< Not found #define ERROR_NOT_SUPPORTED (ERROR_BASE_NUM + 6) ///< Not supported #define ERROR_INVALID_PARAM (ERROR_BASE_NUM + 7) ///< Invalid Parameter #define ERROR_INVALID_STATE (ERROR_BASE_NUM + 8) ///< Invalid state, operation disallowed in this state #define ERROR_INVALID_LENGTH (ERROR_BASE_NUM + 9) ///< Invalid Length #define ERROR_INVALID_FLAGS (ERROR_BASE_NUM + 10) ///< Invalid Flags #define ERROR_INVALID_DATA (ERROR_BASE_NUM + 11) ///< Invalid Data #define ERROR_DATA_SIZE (ERROR_BASE_NUM + 12) ///< Invalid Data size #define ERROR_TIMEOUT (ERROR_BASE_NUM + 13) ///< Operation timed out #define ERROR_NULL (ERROR_BASE_NUM + 14) ///< Null Pointer #define ERROR_FORBIDDEN (ERROR_BASE_NUM + 15) ///< Forbidden Operation #define ERROR_INVALID_ADDR (ERROR_BASE_NUM + 16) ///< Bad Memory Address #define ERROR_BUSY (ERROR_BASE_NUM + 17) ///< Busy #define ERROR_CONN_COUNT (ERROR_BASE_NUM + 18) ///< Maximum connection count exceeded. #define ERROR_RESOURCES (ERROR_BASE_NUM + 19) ///< Not enough resources for operation #define M_ERROR_CHECK(ERR_CODE) {} #define CRITICAL_REGION_ENTER() #define CRITICAL_REGION_EXIT() static inline bool is_word_aligned(void const* p) { return (((uintptr_t)p & 0x03) == 0); } #define CEIL_DIV(A, B) \ (((A) + (B) - 1) / (B)) /************ Memory distribution ****************************************************** ------------------------- offset type size m_sched_event_handler_t 0 (*f)() 4 event_data_size 4 int16 2 align event_header_t m_sched_event_handler_t 8 (*f)() 4 event_data_size 12 int16 2 align event_header_t ... ... event_data[event_data_size] (queue_size+1)* M_SCHED_EVENT_HEADER_SIZE(8) event_data[event_data_size] ... ... total queue_size+1 (queue_size+1)*event_data_size #define M_SCHED_BUF_SIZE(EVENT_SIZE, QUEUE_SIZE) \ (((EVENT_SIZE) + M_SCHED_EVENT_HEADER_SIZE) * ((QUEUE_SIZE) + 1)) /**@brief Scheduler event handler type. */ typedef void (*m_sched_event_handler_t)(void * p_event_data, uint16_t event_size); #define M_SCHED_INIT(EVENT_SIZE, QUEUE_SIZE) \ do \ { \ static uint32_t M_SCHED_BUF[CEIL_DIV(M_SCHED_BUF_SIZE((EVENT_SIZE), (QUEUE_SIZE)), \ sizeof(uint32_t))]; \ uint32_t ERR_CODE = m_sched_init((EVENT_SIZE), (QUEUE_SIZE), M_SCHED_BUF); \ M_ERROR_CHECK(ERR_CODE); \ } while (0) uint32_t m_sched_init(uint16_t max_event_size, uint16_t queue_size, void * p_evt_buffer); void m_sched_execute(void); uint32_t m_sched_event_put(void const * p_event_data, uint16_t event_size, m_sched_event_handler_t handler); uint16_t m_sched_queue_utilization_get(void); uint16_t m_sched_queue_space_get(void); void m_sched_pause(void); void m_sched_resume(void); #ifdef __cplusplus } #endif #endif // M_SCHEDULER_H__
源文件: m_scheduler.coop
/** ****************************************************************************** * @file ../middlewares/src/m_scheduler.c * @author yhangzzz * @version V1.0.0 * @date 2018.10.22 * @brief m_scheduler.c ****************************************************************************** */ #include "m_common.h" #if (defined(M_SCHEDULER_ENABLED) && M_SCHEDULER_ENABLED) ? 1 : 0 #include "m_scheduler.h" #include <stdlib.h> #include <stdint.h> #include <string.h> /**@brief Structure for holding a scheduled event header. */ typedef struct { m_sched_event_handler_t handler; /**< Pointer to event handler to receive the event. */ uint16_t event_data_size; /**< Size of event data. */ } event_header_t; STATIC_ASSERT(sizeof(event_header_t) <= M_SCHED_EVENT_HEADER_SIZE); static event_header_t * m_queue_event_headers; /**< Array for holding the queue event headers. */ static uint8_t * m_queue_event_data; /**< Array for holding the queue event data. */ static volatile uint8_t m_queue_start_index; /**< Index of queue entry at the start of the queue. */ static volatile uint8_t m_queue_end_index; /**< Index of queue entry at the end of the queue. */ static uint16_t m_queue_event_size; /**< Maximum event size in queue. */ static uint16_t m_queue_size; /**< Number of queue entries. */ #if M_SCHEDULER_WITH_PROFILER static uint16_t m_max_queue_utilization; /**< Maximum observed queue utilization. */ #endif #if M_SCHEDULER_WITH_PAUSE static uint32_t m_scheduler_paused_counter = 0; /**< Counter storing the difference between pausing and resuming the scheduler. */ #endif /**@brief Function for incrementing a queue index, and handle wrap-around. * * @param[in] index Old index. * * @return New (incremented) index. */ static inline uint8_t next_index(uint8_t index) { return (index < m_queue_size) ? (index + 1) : 0; } static inline uint8_t m_sched_queue_full() { uint8_t tmp = m_queue_start_index; return next_index(m_queue_end_index) == tmp; } /**@brief Macro for checking if a queue is full. */ #define M_SCHED_QUEUE_FULL() m_sched_queue_full() static inline uint8_t m_sched_queue_empty() { uint8_t tmp = m_queue_start_index; return m_queue_end_index == tmp; } /**@brief Macro for checking if a queue is empty. */ #define M_SCHED_QUEUE_EMPTY() m_sched_queue_empty() uint32_t m_sched_init(uint16_t event_size, uint16_t queue_size, void * p_event_buffer) { uint16_t data_start_index = (queue_size + 1) * sizeof(event_header_t); // Check that buffer is correctly aligned if (!is_word_aligned(p_event_buffer)) { return ERROR_INVALID_PARAM; } // Initialize event scheduler m_queue_event_headers = p_event_buffer; m_queue_event_data = &((uint8_t *)p_event_buffer)[data_start_index]; m_queue_end_index = 0; m_queue_start_index = 0; m_queue_event_size = event_size; m_queue_size = queue_size; #if M_SCHEDULER_WITH_PROFILER m_max_queue_utilization = 0; #endif return SUCCESS; } uint16_t m_sched_queue_space_get() { uint16_t start = m_queue_start_index; uint16_t end = m_queue_end_index; uint16_t free_space = m_queue_size - ((end >= start) ? (end - start) : (m_queue_size + 1 - start + end)); return free_space; } #if M_SCHEDULER_WITH_PROFILER static void queue_utilization_check(void) { uint16_t start = m_queue_start_index; uint16_t end = m_queue_end_index; uint16_t queue_utilization = (end >= start) ? (end - start) : (m_queue_size + 1 - start + end); if (queue_utilization > m_max_queue_utilization) { m_max_queue_utilization = queue_utilization; } } uint16_t m_sched_queue_utilization_get(void) { return m_max_queue_utilization; } #endif // M_SCHEDULER_WITH_PROFILER uint32_t m_sched_event_put(void const * p_event_data, uint16_t event_data_size, m_sched_event_handler_t handler) { uint32_t err_code; if (event_data_size <= m_queue_event_size) { uint16_t event_index = 0xFFFF; CRITICAL_REGION_ENTER(); if (!M_SCHED_QUEUE_FULL()) { event_index = m_queue_end_index; m_queue_end_index = next_index(m_queue_end_index); #if M_SCHEDULER_WITH_PROFILER // This function call must be protected with critical region because // it modifies 'm_max_queue_utilization'. queue_utilization_check(); #endif } CRITICAL_REGION_EXIT(); if (event_index != 0xFFFF) { // NOTE: This can be done outside the critical region since the event consumer will // always be called from the main loop, and will thus never interrupt this code. m_queue_event_headers[event_index].handler = handler; if ((p_event_data != NULL) && (event_data_size > 0)) { memcpy(&m_queue_event_data[event_index * m_queue_event_size], p_event_data, event_data_size); m_queue_event_headers[event_index].event_data_size = event_data_size; } else { m_queue_event_headers[event_index].event_data_size = 0; } err_code = SUCCESS; } else { err_code = ERROR_NO_MEM; } } else { err_code = ERROR_INVALID_LENGTH; } return err_code; } #if M_SCHEDULER_WITH_PAUSE void m_sched_pause(void) { CRITICAL_REGION_ENTER(); if (m_scheduler_paused_counter < UINT32_MAX) { m_scheduler_paused_counter++; } CRITICAL_REGION_EXIT(); } void m_sched_resume(void) { CRITICAL_REGION_ENTER(); if (m_scheduler_paused_counter > 0) { m_scheduler_paused_counter--; } CRITICAL_REGION_EXIT(); } #endif //M_SCHEDULER_WITH_PAUSE /**@brief Function for checking if scheduler is paused which means that should break processing * events. * * @return Boolean value - true if scheduler is paused, false otherwise. */ static inline bool is_m_sched_paused(void) { #if M_SCHEDULER_WITH_PAUSE return (m_scheduler_paused_counter > 0); #else return false; #endif } void m_sched_execute(void) { while (!is_m_sched_paused() && !M_SCHED_QUEUE_EMPTY()) { // Since this function is only called from the main loop, there is no // need for a critical region here, however a special care must be taken // regarding update of the queue start index (see the end of the loop). uint16_t event_index = m_queue_start_index; void * p_event_data; uint16_t event_data_size; m_sched_event_handler_t event_handler; p_event_data = &m_queue_event_data[event_index * m_queue_event_size]; event_data_size = m_queue_event_headers[event_index].event_data_size; event_handler = m_queue_event_headers[event_index].handler; event_handler(p_event_data, event_data_size); // Event processed, now it is safe to move the queue start index, // so the queue entry occupied by this event can be used to store // a next one. m_queue_start_index = next_index(m_queue_start_index); } } #endif //#if (defined(M_SCHEDULER_ENABLED) && M_SCHEDULER_ENABLED)?1:0