本文主要研究一下flink LocalEnvironment的execute方法html
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); DataSet<RecordDto> csvInput = env.readCsvFile(csvFilePath) .pojoType(RecordDto.class, "playerName", "country", "year", "game", "gold", "silver", "bronze", "total"); DataSet<Tuple2<String, Integer>> groupedByCountry = csvInput .flatMap(new FlatMapFunction<RecordDto, Tuple2<String, Integer>>() { private static final long serialVersionUID = 1L; @Override public void flatMap(RecordDto record, Collector<Tuple2<String, Integer>> out) throws Exception { out.collect(new Tuple2<String, Integer>(record.getCountry(), 1)); } }).groupBy(0).sum(1); System.out.println("===groupedByCountry==="); groupedByCountry.print();
flink-java-1.6.2-sources.jar!/org/apache/flink/api/java/DataSet.javajava
/** * Prints the elements in a DataSet to the standard output stream {@link System#out} of the JVM that calls * the print() method. For programs that are executed in a cluster, this method needs * to gather the contents of the DataSet back to the client, to print it there. * * <p>The string written for each element is defined by the {@link Object#toString()} method. * * <p>This method immediately triggers the program execution, similar to the * {@link #collect()} and {@link #count()} methods. * * @see #printToErr() * @see #printOnTaskManager(String) */ public void print() throws Exception { List<T> elements = collect(); for (T e: elements) { System.out.println(e); } }
flink-java-1.6.2-sources.jar!/org/apache/flink/api/java/DataSet.javaapache
/** * Convenience method to get the elements of a DataSet as a List. * As DataSet can contain a lot of data, this method should be used with caution. * * @return A List containing the elements of the DataSet */ public List<T> collect() throws Exception { final String id = new AbstractID().toString(); final TypeSerializer<T> serializer = getType().createSerializer(getExecutionEnvironment().getConfig()); this.output(new Utils.CollectHelper<>(id, serializer)).name("collect()"); JobExecutionResult res = getExecutionEnvironment().execute(); ArrayList<byte[]> accResult = res.getAccumulatorResult(id); if (accResult != null) { try { return SerializedListAccumulator.deserializeList(accResult, serializer); } catch (ClassNotFoundException e) { throw new RuntimeException("Cannot find type class of collected data type.", e); } catch (IOException e) { throw new RuntimeException("Serialization error while deserializing collected data", e); } } else { throw new RuntimeException("The call to collect() could not retrieve the DataSet."); } }
flink-java-1.6.2-sources.jar!/org/apache/flink/api/java/ExecutionEnvironment.javaapi
/** * Triggers the program execution. The environment will execute all parts of the program that have * resulted in a "sink" operation. Sink operations are for example printing results ({@link DataSet#print()}, * writing results (e.g. {@link DataSet#writeAsText(String)}, * {@link DataSet#write(org.apache.flink.api.common.io.FileOutputFormat, String)}, or other generic * data sinks created with {@link DataSet#output(org.apache.flink.api.common.io.OutputFormat)}. * * <p>The program execution will be logged and displayed with a generated default name. * * @return The result of the job execution, containing elapsed time and accumulators. * @throws Exception Thrown, if the program executions fails. */ public JobExecutionResult execute() throws Exception { return execute(getDefaultName()); } /** * Gets a default job name, based on the timestamp when this method is invoked. * * @return A default job name. */ private static String getDefaultName() { return "Flink Java Job at " + Calendar.getInstance().getTime(); } /** * Triggers the program execution. The environment will execute all parts of the program that have * resulted in a "sink" operation. Sink operations are for example printing results ({@link DataSet#print()}, * writing results (e.g. {@link DataSet#writeAsText(String)}, * {@link DataSet#write(org.apache.flink.api.common.io.FileOutputFormat, String)}, or other generic * data sinks created with {@link DataSet#output(org.apache.flink.api.common.io.OutputFormat)}. * * <p>The program execution will be logged and displayed with the given job name. * * @return The result of the job execution, containing elapsed time and accumulators. * @throws Exception Thrown, if the program executions fails. */ public abstract JobExecutionResult execute(String jobName) throws Exception;
flink-java-1.6.2-sources.jar!/org/apache/flink/api/java/LocalEnvironment.javasession
@Override public JobExecutionResult execute(String jobName) throws Exception { if (executor == null) { startNewSession(); } Plan p = createProgramPlan(jobName); // Session management is disabled, revert this commit to enable //p.setJobId(jobID); //p.setSessionTimeout(sessionTimeout); JobExecutionResult result = executor.executePlan(p); this.lastJobExecutionResult = result; return result; } @Override @PublicEvolving public void startNewSession() throws Exception { if (executor != null) { // we need to end the previous session executor.stop(); // create also a new JobID jobID = JobID.generate(); } // create a new local executor executor = PlanExecutor.createLocalExecutor(configuration); executor.setPrintStatusDuringExecution(getConfig().isSysoutLoggingEnabled()); // if we have a session, start the mini cluster eagerly to have it available across sessions if (getSessionTimeout() > 0) { executor.start(); // also install the reaper that will shut it down eventually executorReaper = new ExecutorReaper(executor); } }
flink-core-1.6.2-sources.jar!/org/apache/flink/api/common/PlanExecutor.javaide
private static final String LOCAL_EXECUTOR_CLASS = "org.apache.flink.client.LocalExecutor"; /** * Creates an executor that runs the plan locally in a multi-threaded environment. * * @return A local executor. */ public static PlanExecutor createLocalExecutor(Configuration configuration) { Class<? extends PlanExecutor> leClass = loadExecutorClass(LOCAL_EXECUTOR_CLASS); try { return leClass.getConstructor(Configuration.class).newInstance(configuration); } catch (Throwable t) { throw new RuntimeException("An error occurred while loading the local executor (" + LOCAL_EXECUTOR_CLASS + ").", t); } } private static Class<? extends PlanExecutor> loadExecutorClass(String className) { try { Class<?> leClass = Class.forName(className); return leClass.asSubclass(PlanExecutor.class); } catch (ClassNotFoundException cnfe) { throw new RuntimeException("Could not load the executor class (" + className + "). Do you have the 'flink-clients' project in your dependencies?"); } catch (Throwable t) { throw new RuntimeException("An error occurred while loading the executor (" + className + ").", t); } }
flink-clients_2.11-1.6.2-sources.jar!/org/apache/flink/client/LocalExecutor.javaui
/** * Executes the given program on a local runtime and waits for the job to finish. * * <p>If the executor has not been started before, this starts the executor and shuts it down * after the job finished. If the job runs in session mode, the executor is kept alive until * no more references to the executor exist.</p> * * @param plan The plan of the program to execute. * @return The net runtime of the program, in milliseconds. * * @throws Exception Thrown, if either the startup of the local execution context, or the execution * caused an exception. */ @Override public JobExecutionResult executePlan(Plan plan) throws Exception { if (plan == null) { throw new IllegalArgumentException("The plan may not be null."); } synchronized (this.lock) { // check if we start a session dedicated for this execution final boolean shutDownAtEnd; if (jobExecutorService == null) { shutDownAtEnd = true; // configure the number of local slots equal to the parallelism of the local plan if (this.taskManagerNumSlots == DEFAULT_TASK_MANAGER_NUM_SLOTS) { int maxParallelism = plan.getMaximumParallelism(); if (maxParallelism > 0) { this.taskManagerNumSlots = maxParallelism; } } // start the cluster for us start(); } else { // we use the existing session shutDownAtEnd = false; } try { // TODO: Set job's default parallelism to max number of slots final int slotsPerTaskManager = jobExecutorServiceConfiguration.getInteger(TaskManagerOptions.NUM_TASK_SLOTS, taskManagerNumSlots); final int numTaskManagers = jobExecutorServiceConfiguration.getInteger(ConfigConstants.LOCAL_NUMBER_TASK_MANAGER, 1); plan.setDefaultParallelism(slotsPerTaskManager * numTaskManagers); Optimizer pc = new Optimizer(new DataStatistics(), jobExecutorServiceConfiguration); OptimizedPlan op = pc.compile(plan); JobGraphGenerator jgg = new JobGraphGenerator(jobExecutorServiceConfiguration); JobGraph jobGraph = jgg.compileJobGraph(op, plan.getJobId()); return jobExecutorService.executeJobBlocking(jobGraph); } finally { if (shutDownAtEnd) { stop(); } } } }
flink-clients_2.11-1.6.2-sources.jar!/org/apache/flink/client/LocalExecutor.javathis
@Override public void start() throws Exception { synchronized (lock) { if (jobExecutorService == null) { // create the embedded runtime jobExecutorServiceConfiguration = createConfiguration(); // start it up jobExecutorService = createJobExecutorService(jobExecutorServiceConfiguration); } else { throw new IllegalStateException("The local executor was already started."); } } } private Configuration createConfiguration() { Configuration newConfiguration = new Configuration(); newConfiguration.setInteger(TaskManagerOptions.NUM_TASK_SLOTS, getTaskManagerNumSlots()); newConfiguration.setBoolean(CoreOptions.FILESYTEM_DEFAULT_OVERRIDE, isDefaultOverwriteFiles()); newConfiguration.addAll(baseConfiguration); return newConfiguration; } private JobExecutorService createJobExecutorService(Configuration configuration) throws Exception { final JobExecutorService newJobExecutorService; if (CoreOptions.NEW_MODE.equals(configuration.getString(CoreOptions.MODE))) { if (!configuration.contains(RestOptions.PORT)) { configuration.setInteger(RestOptions.PORT, 0); } final MiniClusterConfiguration miniClusterConfiguration = new MiniClusterConfiguration.Builder() .setConfiguration(configuration) .setNumTaskManagers( configuration.getInteger( ConfigConstants.LOCAL_NUMBER_TASK_MANAGER, ConfigConstants.DEFAULT_LOCAL_NUMBER_TASK_MANAGER)) .setRpcServiceSharing(RpcServiceSharing.SHARED) .setNumSlotsPerTaskManager( configuration.getInteger( TaskManagerOptions.NUM_TASK_SLOTS, 1)) .build(); final MiniCluster miniCluster = new MiniCluster(miniClusterConfiguration); miniCluster.start(); configuration.setInteger(RestOptions.PORT, miniCluster.getRestAddress().getPort()); newJobExecutorService = miniCluster; } else { final LocalFlinkMiniCluster localFlinkMiniCluster = new LocalFlinkMiniCluster(configuration, true); localFlinkMiniCluster.start(); newJobExecutorService = localFlinkMiniCluster; } return newJobExecutorService; }
JobExecutorService
),而後調用MiniCluster.start方法啓動以後返回JobExecutorService
),而後調用LocalFlinkMiniCluster.start()啓動以後返回flink-runtime_2.11-1.6.2-sources.jar!/org/apache/flink/runtime/minicluster/MiniCluster.javacode
/** * This method runs a job in blocking mode. The method returns only after the job * completed successfully, or after it failed terminally. * * @param job The Flink job to execute * @return The result of the job execution * * @throws JobExecutionException Thrown if anything went amiss during initial job launch, * or if the job terminally failed. */ @Override public JobExecutionResult executeJobBlocking(JobGraph job) throws JobExecutionException, InterruptedException { checkNotNull(job, "job is null"); final CompletableFuture<JobSubmissionResult> submissionFuture = submitJob(job); final CompletableFuture<JobResult> jobResultFuture = submissionFuture.thenCompose( (JobSubmissionResult ignored) -> requestJobResult(job.getJobID())); final JobResult jobResult; try { jobResult = jobResultFuture.get(); } catch (ExecutionException e) { throw new JobExecutionException(job.getJobID(), "Could not retrieve JobResult.", ExceptionUtils.stripExecutionException(e)); } try { return jobResult.toJobExecutionResult(Thread.currentThread().getContextClassLoader()); } catch (IOException | ClassNotFoundException e) { throw new JobExecutionException(job.getJobID(), e); } }
submissionFuture
)submissionFuture
)經過thenCompose鏈接了requestJobResult方法來根據jobId請求jobResult(jobResultFuture
)這裏根據CoreOptions.MODE配置,若是是CoreOptions.NEW_MODE則建立的jobExecutorService是MiniCluster,不然建立的jobExecutorService是LocalFlinkMiniCluster
),這裏建立的jobExecutorService爲MiniCluster;以後經過JobGraphGenerator將plan轉換爲jobGraph;最後調用jobExecutorService.executeJobBlocking(jobGraph),執行這個jobGraph,而後返回JobExecutionResult