Greedy Randomized Adaptive Search,貪婪隨機自適應搜索(GRAS),是組合優化問題中的多起點元啓發式算法,在算法的每次迭代中,主要由兩個階段組成:構造(construction)和局部搜索( local search)。 構造(construction)階段主要用於生成一個可行解,然後該初始可行解會被放進局部搜索進行鄰域搜索,直到找到一個局部最優解爲止。python
如上面所說,其實整一個算法的框架相對於其餘算法來講還算比較簡單明瞭,你們能夠先看如下總體的僞代碼:
git
GRAS主要由兩部分組成:github
而後再多說兩句:算法
Repair是什麼鬼?
有時候因爲隨機因素的加入,Greedy_Randomized_Construction階段生成的解不必定都是可行解,因此爲了保證下一步的Local Search能繼續進行,加入repair算子,對解進行修復,保證其可行。架構
不是說自適應(Adaptive)嗎?我怎麼沒看到Adaptive 的過程?
別急,這個後面具體舉例的時候會詳細講到。app
爲了你們能更加深刻理解該算法,咱們舉一個簡單的例子來爲你們詳細講解算法的流程。框架
好了,相信你們都看懂上面的問題了(看不懂也別問我,攤手)。對於上述問題,咱們來一步一個腳印用GRAS來求解之,來,跟緊小編的腳步……dom
強調了不少次,GRAS由兩部分組成:Greedy_Randomized_Construction和Local Search,因此,在求解具體問題的時候,完成這兩部分的設計,而後按照第二節所示的框架搭起來就能夠。ide
這裏仍是老規矩,先上僞代碼給你們看看,而後咱們再進行講解,畢竟對於算法來講,僞代碼的做用不言而喻。
函數
相信通過上面如此詳細的介紹,你們都懂了吧!
關於Local Search方面的內容,相信你們學習heuristic這麼久了,就不用我多說什麼了吧:
簡單看一下僞代碼便可,主要是鄰域算子的設計,而後就是在鄰域裏面進行搜索,找到一個局部最優解爲止。而後關於鄰域搜索,有best-improving or first-improving strategy 兩種策略,這個下次有時間出個專題給你們講明白一些相關概念吧。
前面咱們說了,Greedy_Randomized_Construction用於生成初始解,既然是Greedy_Randomized兩個結合體,那麼確定就有一個權重分配的問題,即,是Greedy成分多一點呢?仍是Randomized成分多一點好呢?所以,爲了控制這兩個小老弟的權重,防止某個傢伙在該過程當中用力過猛致使解不那麼好的狀況,咱們引入一個參數α:
其餘部分就再也不多說,能夠看到,上面的α參數主要是控制RCL的長度:
因爲小編精力有限,就不從頭寫一遍了,從GitHub上找了一個感受還不錯的算法給你們,也是求解TSP問題的。不過說實在的,python寫算法的速度是很慢的,不管是速度仍是算法架構等方面都不推薦你們用matlab或者python寫大型優化算法。
運行結果以下:
代碼算例以及相關運行結果請關注公衆號【程序猿聲】,後臺回覆:GRAS,便可下載
############################################################################ # Created by: Prof. Valdecy Pereira, D.Sc. # UFF - Universidade Federal Fluminense (Brazil) # email: valdecy.pereira@gmail.com # Course: Metaheuristics # Lesson: Local Search-GRASP # Citation: # PEREIRA, V. (2018). Project: Metaheuristic-Local_Search-GRASP, File: Python-MH-Local Search-GRASP.py, GitHub repository: <https://github.com/Valdecy/Metaheuristic-Local_Search-GRASP> ############################################################################ # Required Libraries import pandas as pd import random import numpy as np import copy import os from matplotlib import pyplot as plt # Function: Tour Distance def distance_calc(Xdata, city_tour): distance = 0 for k in range(0, len(city_tour[0])-1): m = k + 1 distance = distance + Xdata.iloc[city_tour[0][k]-1, city_tour[0][m]-1] return distance # Function: Euclidean Distance def euclidean_distance(x, y): distance = 0 for j in range(0, len(x)): distance = (x.iloc[j] - y.iloc[j])**2 + distance return distance**(1/2) # Function: Initial Seed def seed_function(Xdata): seed = [[],float("inf")] sequence = random.sample(list(range(1,Xdata.shape[0]+1)), Xdata.shape[0]) sequence.append(sequence[0]) seed[0] = sequence seed[1] = distance_calc(Xdata, seed) return seed # Function: Build Distance Matrix def buid_distance_matrix(coordinates): Xdata = pd.DataFrame(np.zeros((coordinates.shape[0], coordinates.shape[0]))) for i in range(0, Xdata.shape[0]): for j in range(0, Xdata.shape[1]): if (i != j): x = coordinates.iloc[i,:] y = coordinates.iloc[j,:] Xdata.iloc[i,j] = euclidean_distance(x, y) return Xdata # Function: Tour Plot def plot_tour_distance_matrix (Xdata, city_tour): m = Xdata.copy(deep = True) for i in range(0, Xdata.shape[0]): for j in range(0, Xdata.shape[1]): m.iloc[i,j] = (1/2)*(Xdata.iloc[0,j]**2 + Xdata.iloc[i,0]**2 - Xdata.iloc[i,j]**2) m = m.values w, u = np.linalg.eig(np.matmul(m.T, m)) s = (np.diag(np.sort(w)[::-1]))**(1/2) coordinates = np.matmul(u, s**(1/2)) coordinates = coordinates.real[:,0:2] xy = pd.DataFrame(np.zeros((len(city_tour[0]), 2))) for i in range(0, len(city_tour[0])): if (i < len(city_tour[0])): xy.iloc[i, 0] = coordinates[city_tour[0][i]-1, 0] xy.iloc[i, 1] = coordinates[city_tour[0][i]-1, 1] else: xy.iloc[i, 0] = coordinates[city_tour[0][0]-1, 0] xy.iloc[i, 1] = coordinates[city_tour[0][0]-1, 1] plt.plot(xy.iloc[:,0], xy.iloc[:,1], marker = 's', alpha = 1, markersize = 7, color = 'black') plt.plot(xy.iloc[0,0], xy.iloc[0,1], marker = 's', alpha = 1, markersize = 7, color = 'red') plt.plot(xy.iloc[1,0], xy.iloc[1,1], marker = 's', alpha = 1, markersize = 7, color = 'orange') return # Function: Tour Plot def plot_tour_coordinates (coordinates, city_tour): coordinates = coordinates.values xy = pd.DataFrame(np.zeros((len(city_tour[0]), 2))) for i in range(0, len(city_tour[0])): if (i < len(city_tour[0])): xy.iloc[i, 0] = coordinates[city_tour[0][i]-1, 0] xy.iloc[i, 1] = coordinates[city_tour[0][i]-1, 1] else: xy.iloc[i, 0] = coordinates[city_tour[0][0]-1, 0] xy.iloc[i, 1] = coordinates[city_tour[0][0]-1, 1] plt.plot(xy.iloc[:,0], xy.iloc[:,1], marker = 's', alpha = 1, markersize = 7, color = 'black') plt.plot(xy.iloc[0,0], xy.iloc[0,1], marker = 's', alpha = 1, markersize = 7, color = 'red') plt.plot(xy.iloc[1,0], xy.iloc[1,1], marker = 's', alpha = 1, markersize = 7, color = 'orange') return # Function: Rank Cities by Distance def ranking(Xdata, city = 0): rank = pd.DataFrame(np.zeros((Xdata.shape[0], 2)), columns = ['Distance', 'City']) for i in range(0, rank.shape[0]): rank.iloc[i,0] = Xdata.iloc[i,city] rank.iloc[i,1] = i + 1 rank = rank.sort_values(by = 'Distance') return rank # Function: RCL def restricted_candidate_list(Xdata, greediness_value = 0.5): seed = [[],float("inf")] sequence = [] sequence.append(random.sample(list(range(1,Xdata.shape[0]+1)), 1)[0]) for i in range(0, Xdata.shape[0]): count = 1 rand = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1) if (rand > greediness_value and len(sequence) < Xdata.shape[0]): next_city = int(ranking(Xdata, city = sequence[-1] - 1).iloc[count,1]) while next_city in sequence: count = np.clip(count+1,1,Xdata.shape[0]-1) next_city = int(ranking(Xdata, city = sequence[-1] - 1).iloc[count,1]) sequence.append(next_city) elif (rand <= greediness_value and len(sequence) < Xdata.shape[0]): next_city = random.sample(list(range(1,Xdata.shape[0]+1)), 1)[0] while next_city in sequence: next_city = int(random.sample(list(range(1,Xdata.shape[0]+1)), 1)[0]) sequence.append(next_city) sequence.append(sequence[0]) seed[0] = sequence seed[1] = distance_calc(Xdata, seed) return seed # Function: 2_opt def local_search_2_opt(Xdata, city_tour): tour = copy.deepcopy(city_tour) best_route = copy.deepcopy(tour) seed = copy.deepcopy(tour) for i in range(0, len(tour[0]) - 2): for j in range(i+1, len(tour[0]) - 1): best_route[0][i:j+1] = list(reversed(best_route[0][i:j+1])) best_route[0][-1] = best_route[0][0] best_route[1] = distance_calc(Xdata, best_route) if (best_route[1] < tour[1]): tour[1] = copy.deepcopy(best_route[1]) for n in range(0, len(tour[0])): tour[0][n] = best_route[0][n] best_route = copy.deepcopy(seed) return tour # Function: GRASP def greedy_randomized_adaptive_search_procedure(Xdata, city_tour, iterations = 50, rcl = 25, greediness_value = 0.5): count = 0 best_solution = copy.deepcopy(city_tour) while (count < iterations): rcl_list = [] for i in range(0, rcl): rcl_list.append(restricted_candidate_list(Xdata, greediness_value = greediness_value)) candidate = int(random.sample(list(range(0,rcl)), 1)[0]) city_tour = local_search_2_opt(Xdata, city_tour = rcl_list[candidate]) while (city_tour[0] != rcl_list[candidate][0]): rcl_list[candidate] = copy.deepcopy(city_tour) city_tour = local_search_2_opt(Xdata, city_tour = rcl_list[candidate]) if (city_tour[1] < best_solution[1]): best_solution = copy.deepcopy(city_tour) count = count + 1 print("Iteration =", count, "-> Distance =", best_solution[1]) print("Best Solution =", best_solution) return best_solution ######################## Part 1 - Usage #################################### X = pd.read_csv('Python-MH-Local Search-GRASP-Dataset-01.txt', sep = '\t') #17 cities = 1922.33 seed = seed_function(X) lsgrasp = greedy_randomized_adaptive_search_procedure(X, city_tour = seed, iterations = 5, rcl = 5, greediness_value = 0.5) plot_tour_distance_matrix(X, lsgrasp) # Red Point = Initial city; Orange Point = Second City # The generated coordinates (2D projection) are aproximated, depending on the data, the optimum tour may present crosses. Y = pd.read_csv('Python-MH-Local Search-GRASP-Dataset-02.txt', sep = '\t') # Berlin 52 = 7544.37 X = buid_distance_matrix(Y) seed = seed_function(X) lsgrasp = greedy_randomized_adaptive_search_procedure(X, city_tour = seed, iterations = 10, rcl = 15, greediness_value = 0.5) plot_tour_coordinates (Y, lsgrasp) # Red Point = Initial city; Orange Point = Second City