1.使用array函數建立數組python
import numpy as np ndarray1 = np.array([1, 2, 3]) array([1, 2, 3]) ndarray2 = np.array(list('abcd')) array(['a', 'b', 'c', 'd'], dtype='<U1') ndarray3 = np.array([[1, 2], [3, 4]]) array([[1, 2], [3, 4]])
2.zeros和zeros_like建立數組數組
用於建立數組,數組元素默認值是0. 注意:zeros_like函數只是根據傳入的ndarray數組的shape來建立全部元素爲0的數組,並非拷貝源數組中的數據函數
ndarray1 = np.zeros(6) ndarray2 = np.zeros((2, 3)) ndarray3 = np.zeros_like(ndarray2) # 按照 ndarray2 的shape建立數組 print("數組類型:") print('ndarray1:', type(ndarray1)) print('ndarray2:', type(ndarray2)) print('ndarray3:', type(ndarray3))print("數組元素類型:") print('ndarray1:', ndarray1.dtype) print('ndarray2:', ndarray2.dtype) print('ndarray3:', ndarray3.dtype)print("數組形狀:") print('ndarray1:', ndarray1.shape) print('ndarray2:', ndarray2.shape) print('ndarray3:', ndarray3.shape) 輸出結果: 數組類型: ndarray1: <class 'numpy.ndarray'> ndarray2: <class 'numpy.ndarray'> ndarray3: <class 'numpy.ndarray'> 數組元素類型: ndarray1: float64 ndarray2: float64 ndarray3: float64 數組形狀: ndarray1: (6,) ndarray2: (2, 3) ndarray3: (2, 3)
3.ones和ones_like建立數組spa
與zero相似code
# 建立數組,元素默認值是0 ndarray1 = np.ones(7) ndarray2 = np.ones((2, 3)) # 修改元素的值 ndarray2[0][1] = 4 ndarray3 = np.ones_like(ndarray2) # 按照 ndarray2 的shape建立數組 # 打印數組元素類型 print("數組類型:") print('ndarray1:', type(ndarray1)) print('ndarray2:', type(ndarray2)) print('ndarray3:', type(ndarray3))print("數組元素類型:") print('ndarray1:', ndarray1.dtype) print('ndarray2:', ndarray2.dtype) print('ndarray3:', ndarray3.dtype)print("數組形狀:") print('ndarray1:', ndarray1.shape) print('ndarray2:', ndarray2.shape) print('ndarray3:', ndarray3.shape) 輸出結果: 數組類型: ndarray1: <class 'numpy.ndarray'> ndarray2: <class 'numpy.ndarray'> ndarray3: <class 'numpy.ndarray'> 數組元素類型: ndarray1: float64 ndarray2: float64 ndarray3: float64 數組形狀: ndarray1: (7,) ndarray2: (2, 3) ndarray3: (2, 3)
4.empty和empty_like建立數組blog
用於建立空數組,空數據中的值並不爲0,而是未初始化的隨機值.class
ndarray1 = np.empty(5) ndarray2 = np.empty((2, 3)) ndarray3 = np.empty_like(ndarray1) # 打印數組元素類型 print("數組類型:") print('ndarray1:', type(ndarray1)) print('ndarray2:', type(ndarray2)) print('ndarray3:', type(ndarray3))print("數組元素類型:") print('ndarray1:', ndarray1.dtype) print('ndarray2:', ndarray2.dtype) print('ndarray3:', ndarray3.dtype)print("數組形狀:") print('ndarray1:', ndarray1.shape) print('ndarray2:', ndarray2.shape) print('ndarray3:', ndarray3.shape) 輸出結果: 數組類型: ndarray1: <class 'numpy.ndarray'> ndarray2: <class 'numpy.ndarray'> ndarray3: <class 'numpy.ndarray'> 數組元素類型: ndarray1: float64 ndarray2: float64 ndarray3: float64 數組形狀: ndarray1: (5,) ndarray2: (2, 3) ndarray3: (5,)
5.arange函數建立數組import
arange函數是python內置函數range函數的數組版本float
ndarray1 = np.arange(10) print("ndarray1:",ndarray1) ndarray2 = np.arange(10, 20) print("ndarray2:",ndarray2) ndarray3 = np.arange(10, 20, 2) print("ndarray3:",ndarray3) 輸出結果: ndarray1: [0 1 2 3 4 5 6 7 8 9] ndarray2: [10 11 12 13 14 15 16 17 18 19] ndarray3: [10 12 14 16 18]
6.eye建立對角矩陣數組numpy
該函數用於建立一個N*N的矩陣,對角線爲1,其他爲0.
ndarray1 = np.eye(3) ndarray1 輸出結果: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])