Eva loves to collect coins from all over the universe, including some other planets like Mars. One day she visited a universal shopping mall which could accept all kinds of coins as payments. However, there was a special requirement of the payment: for each bill, she must pay the exact amount. Since she has as many as 1 coins with her, she definitely needs your help. You are supposed to tell her, for any given amount of money, whether or not she can find some coins to pay for it.html
Each input file contains one test case. For each case, the first line contains 2 positive numbers: N
(≤, the total number of coins) and M
(≤, the amount of money Eva has to pay). The second line contains N
face values of the coins, which are all positive numbers. All the numbers in a line are separated by a space.ios
For each test case, print in one line the face values V1≤V2≤⋯≤Vk such that V1+V2+⋯+Vk=M
. All the numbers must be separated by a space, and there must be no extra space at the end of the line. If such a solution is not unique, output the smallest sequence. If there is no solution, output "No Solution" instead.數組
Note: sequence {A[1], A[2], ...} is said to be "smaller" than sequence {B[1], B[2], ...} if there exists k≥1 such that A[i]=B[i] for all i<k, and A[k] < B[k].flex
8 9 5 9 8 7 2 3 4 1
1 3 5
4 8 7 2 4 3
No Solution
題意:ui
用n個硬幣買價值爲m的東西,輸出使用方案,使得正好幾個硬幣加起來價值爲m。從小到大排列,輸出最小的那個排列方案spa
題解:code
這是一道01揹包問題,解題時注意題意的轉化:htm
AC代碼:blog
#include<iostream> #include<queue> #include<algorithm> using namespace std; int dp[101];//bags[i]面值不大於i的最大的面值和 bool choice[10001][101]; int cmp(int a, int b){return a > b;} int main(){ int w[10001]; int n,m; cin>>n>>m; for(int i=1;i<=n;i++){ cin>>w[i]; } sort(w+1,w+1+n,cmp); for(int i=1;i<=n;i++){ for(int j=m;j>=w[i];j--){ //之因此要反着來,和揹包問題的更新規則有關 if(dp[j-w[i]]+w[i]>=dp[j]){//等號必須取到,不然輸出的解是最大的sequence choice[i][j]=true;//跟蹤哪一個物品被選擇了 dp[j]=dp[j-w[i]]+w[i]; } } } if(dp[m] != m) printf("No Solution"); else{ //下面是輸出最優組合的過程,其實和揹包問題的更新規則有關,就是沿着選出解的路徑,反着走回去,就找到了全部被選擇的數字。 int i=n,j=m; while(1){ if(choice[i][j]==true){ cout<<w[i]; j-=w[i]; if(j!=0) cout<<" "; } i--; if(j==0||i==0) break; } } return 0; }