nodejs+kafka+storm+hbase 開發

1.環境介紹java

 如圖所示,NODEJS作爲數據源的的產生者產生消息,發到Kafka隊列,而後參見紅線,表示本地開發的環境下數據的流向(本地開發時,storm topology運行在本地模式)node

2.搭建環境,我採用的是eclipse+mavenapache

1.創建一個maven工程, 而後將pom文件修改以下:api

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.h3c.storm</groupId>
  <artifactId>storm-samples</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>storm-kafka-test</name>
  <url>http://maven.apache.org</url>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
    <dependency>  
        <groupId>jdk.tools</groupId>  
        <artifactId>jdk.tools</artifactId>  
        <version>1.7</version>  
        <scope>system</scope>  
        <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>  
    </dependency>    
    <dependency>
      <groupId>org.apache.storm</groupId>
      <artifactId>storm-core</artifactId>
      <version>0.10.0</version>
      <!-- keep storm out of the jar-with-dependencies -->
      <scope>provided</scope>
    </dependency>
    
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka_2.9.2</artifactId>
        <version>0.8.1.1</version>
        <exclusions>
            <exclusion>
                <groupId>org.apache.zookeeper</groupId>
                <artifactId>zookeeper</artifactId>
            </exclusion>
            <exclusion>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
       
    <dependency>  
      <groupId>org.apache.storm</groupId>  
         <artifactId>storm-kafka</artifactId>  
          <version>0.9.2-incubating</version>  
    </dependency>
    
    <dependency>
    <groupId>org.apache.storm</groupId>
    <artifactId>storm-hbase</artifactId>
    <version>0.10.0</version>
    </dependency>  
  </dependencies>
</project>
View Code

 

2.nodeJS發消息的示例代碼,固然,首先要手動在kafka裏新建一個topic對應代碼裏的topic,我這裏建立的topic是"historyclients"session

var kafka = require('kafka-node');
var Producer = kafka.Producer;
var KeyedMessage = kafka.KeyedMessage;
var conf = '172.27.8.111:2181,172.27.8.112:2181,172.27.8.119:2181';
var client = new kafka.Client(conf);
var producer = new Producer(client);

var clientOnlineInfo ={"clientMAC":"0000-0000-0002",
                                  "acSN":"210235A1AMB159000008",
                                  "onLineTime":"2016-06-27 10:00:00"};

var clientOnlineInfoStr = JSON.stringify(clientOnlineInfo);

var msg = [
    { topic: 'historyclients', messages: clientOnlineInfoStr, partition: 0 }
];


producer.on('ready', function () {
        producer.send(msg, function (err, data) {
            console.log("done!")
            console.log(data);
        });
});

producer.on('error', function (err) {
    console.error(err);
});
View Code

 

3.spout代碼app

package com.h3c.storm;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

public class KafkaSpout extends BaseRichSpout{
    private SpoutOutputCollector collector;
    private  ConsumerConnector consumer; 
    private  String topic; 
    Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap;
    
    private static ConsumerConfig createConsumerConfig()  
    {  
        Properties props = new Properties();  
        props.put("zookeeper.connect", "172.27.8.111:2181,172.27.8.112:2181,172.27.8.119:2181");  
        props.put("group.id", "group1");  
        props.put("zookeeper.session.timeout.ms", "40000");  
        props.put("zookeeper.sync.time.ms", "200");  
        props.put("auto.commit.interval.ms", "1000");  
        return new ConsumerConfig(props);  
    }   
    
    @Override
    public void open(Map conf, TopologyContext context,SpoutOutputCollector collector) {
        System.err.println("open!!!!!!!!!!!!!!!");
        this.collector = collector;
        
        /* create consumer */
        this.topic = "historyclients";
        this.consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig()); 
        
        /* topic HashMap,which means the map can include multiple topics */
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(topic, new Integer(1));  
        this.consumerMap = consumer.createMessageStreams(topicCountMap);  
    }

    @Override
    public void nextTuple() {
        
        KafkaStream<byte[], byte[]> stream = consumerMap.get(topic).get(0);  
        ConsumerIterator<byte[], byte[]> it = stream.iterator(); 
        String toSay = "";
        while (it.hasNext()) {
            toSay = new String(it.next().message());
            System.err.println("receive:" + toSay);  
            this.collector.emit(new Values(toSay));
        }              
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("clientInfo"));
    }
}
View Code

4.storm-hbase API 中要求實現的mapper代碼dom

package com.h3c.storm;

import org.apache.storm.hbase.bolt.mapper.HBaseMapper;
import org.apache.storm.hbase.common.ColumnList;

import backtype.storm.tuple.Tuple;

public class MyHBaseMapper implements HBaseMapper {

      public ColumnList columns(Tuple tuple) {
        
        ColumnList cols = new ColumnList();
        
        //參數依次是列族名,列名,值
        cols.addColumn("f1".getBytes(), "colMAC".getBytes(), tuple.getStringByField("clientInfo").getBytes());
        //System.err.println("BOLT + " + tuple.getStringByField("clientInfo"));
        
        //cols.addColumn("f1".getBytes(), "hhhhhhh".getBytes(), "0000-0000-0001".getBytes());
        //System.err.println("BOLT + " + tuple.getStringByField("clientInfo"));
        return cols;
      }

      public byte[] rowKey(Tuple tuple) {
                 
        //return tuple.getStringByField("clientInfo").getBytes();
        return "newRowKey".getBytes(); 
      }
    }
Mapper

5.topology代碼eclipse

package com.h3c.storm;

import java.util.Map;
import java.util.Random;

import org.apache.storm.hbase.bolt.HBaseBolt;
import org.apache.storm.hbase.bolt.mapper.HBaseMapper;

import java.util.HashMap;  
import java.util.List;  

import java.util.Properties;  
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.*;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.ConsumerTimeoutException;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;

public class PersistTopology {

    private static final String KAFKA_SPOUT = "KAFKA_SPOUT";
    private static final String HBASE_BOLT = "HBASE_BOLT";
    
    public static void main(String[] args) throws Exception {
        
        /* define spout */
        KafkaSpout kafkaSpout = new KafkaSpout();
        
        System.setProperty("hadoop.home.dir", "E:\\eclipse\\");
        
        /* define HBASE Bolt */
        HBaseMapper mapper = new MyHBaseMapper();
        HBaseBolt hbaseBolt = new HBaseBolt("historyclients", mapper).withConfigKey("hbase.conf");
        
        /* define topology*/
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout(KAFKA_SPOUT, kafkaSpout);
        builder.setBolt(HBASE_BOLT, hbaseBolt).shuffleGrouping(KAFKA_SPOUT);

        Config conf = new Config();
        conf.setDebug(true);

        Map<String, Object> hbConf = new HashMap<String, Object>();
//        if(args.length > 0){
//            hbConf.put("hbase.rootdir", args[0]);
//        }
        //hbConf.put("hbase.rootdir", "hdfs://172.27.8.111:8020/apps/hbase/data");
        conf.put("hbase.conf", hbConf);
        
        if (args != null && args.length > 0) {
            conf.setNumWorkers(3);

            StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
        } else {

            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("test", conf, builder.createTopology());
            Utils.sleep(600000);
            cluster.killTopology("test");
            cluster.shutdown();
        }
    }
}
View Code

6.須要從集羣中取中hbase-site.xml這個文件,加到項目裏,在buildpath中可設置maven

7.在C:\Windows\System32\drivers\etc下把hosts文件加上到集羣的IP與域名的映射ide

172.27.8.111 node1.hde.h3c.com node1
172.27.8.112 node2.hde.h3c.com node2
172.27.8.119 node3.hde.h3c.com node3

8. 出現java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.的解決辦法

網上下載winutils.exe這個文件,找一個地方放好,好比我放在E:\eclipse\bin 下面,前面必定要有個「bin」

而後在代碼里加上這句便可

System.setProperty("hadoop.home.dir", "E:\\eclipse\\");

 

參考文章 

http://www.tuicool.com/articles/r6ZZBjU

相關文章
相關標籤/搜索