關閉中斷、進入 SVC 模式linux
ENTRY(stext) THUMB( adr r9, BSYM(1f) ) @ Kernel is always entered in ARM. THUMB( bx r9 ) @ If this is a Thumb-2 kernel, THUMB( .thumb ) @ switch to Thumb now. THUMB(1: ) setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ 關中斷、進入 SVC 模式
查找指定處理器類型的 proc_infoapp
mrc p15, 0, r9, c0, c0 @ 取出處理器 ID 放入寄存器 r9 中 bl __lookup_processor_type @ 查找處理器類型 r5=procinfo r9=cpuid | |-->/* 找到匹配 proc_info 則返回,不然將 r5 清零 */ | __CPUINIT | __lookup_processor_type: | adr r3, __lookup_processor_type_data | | | |-->.align 2 | | .type __lookup_processor_type_data, %object | | __lookup_processor_type_data: | | .long . | | .long __proc_info_begin | | .long __proc_info_end | | .size __lookup_processor_type_data, . - __lookup_processor_type_data | ldmia r3, {r4 - r6} @ r4=當前數據地址、r5=處理器數據起始地址、r6=結束地址 | sub r3, r3, r4 @ 計算出運行地址和連接地址間的偏移 | add r5, r5, r3 @ 修正 r5 | add r6, r6, r3 @ 修正 r6 | 1: ldmia r5, {r3, r4} | and r4, r4, r9 | teq r3, r4 | beq 2f @ 若是相等則匹配成功 | add r5, r5, #PROC_INFO_SZ @ 開始指向下一個處理器數據 | cmp r5, r6 | blo 1b @ 若是還有數據則循環查找 | mov r5, #0 @ 未找到時將 r5 清零 | 2: mov pc, lr @ 返回 | ENDPROC(__lookup_processor_type) movs r10, r5 @ 使用 r5 改變標誌位 THUMB( it eq ) beq __error_p @ 若是相等則沒找到 #ifndef CONFIG_XIP_KERNEL adr r3, 2f @ r3=運行地址 ldmia r3, {r4, r8} @ r4=連接地址(虛擬地址)、r8=頁偏移 sub r4, r3, r4 @ 運行地址與連接地址間的差值 /* * 內核被解壓到 物理地址+text_offset 處,即 0x40008000,也是當前的運行地址 * 而內核在編譯時被連接到 page_offset+text_offset 處,即 0xc0008000 * 所以 r4=r3-r4 記錄的是內核實際存放的物理地址和運行時的虛擬地址間的偏移 * 即 r4=phys-page_offset * 因此 r8 = r4+r8 = phys-page_offset+page_offset = phys,即物理地址的起始地址 */ add r8, r8, r4 @ 物理地址的起始地址 #else ldr r8, =PHYS_OFFSET @ always constant in this case #endif #ifndef CONFIG_XIP_KERNEL 2: .long . .long PAGE_OFFSET #endif
檢查 bootloader 傳遞的啓動參數是否有效函數
/* * r1 = machine no, r2 = atags or dtb, * r8 = phys_offset, r9 = cpuid, r10 = procinfo */ bl __vet_atags | +-->/* Returns: | * r2 either valid atags pointer, valid dtb pointer, or zero | * r5, r6 corrupted | */ | __vet_atags: | tst r2, #0x3 @ 判斷 atags 是否 4 字節對齊 | bne 1f | | ldr r5, [r2, #0] | #ifdef CONFIG_OF_FLATTREE @ 配置此項時支持設備樹 | ldr r6, =OF_DT_MAGIC @ 判斷是不是 DTB 數據 | cmp r5, r6 | beq 2f | #endif | cmp r5, #ATAG_CORE_SIZE @ 判斷第一個 atags 參數的大小是不是與 ATAG_CORE 相同 | cmpne r5, #ATAG_CORE_SIZE_EMPTY | bne 1f | ldr r5, [r2, #4] | ldr r6, =ATAG_CORE @ 再判斷該參數是否是 ATAG_CORE 節點 | cmp r5, r6 | bne 1f | | 2: mov pc, lr @ 所傳遞參數合法,正常返回 | | 1: mov r2, #0 | mov pc, lr | ENDPROC(__vet_atags)
當前內核鏡像在內存中的佈局佈局
// 物理內存中的佈局 _____________________________________________ | | | | | | | | | | 段描述符 | kernel image | | | | | |______|__________|__________________________| 0x4000_0000 0x4000_8000 // 虛擬內存中的佈局 _____________________________________________ | | | | | | | | | | 段描述符 | kernel image | | | | | |______|__________|__________________________| 0xc000_0000 0xc000_8000
內核創建內核空間臨時的線性映射,採用一級映射,也就是 section 模式,每一個section 爲 1MB.ui
#ifdef CONFIG_SMP_ON_UP bl __fixup_smp @ 自旋鎖在 SMP 和 UP 上的相關修正 @ arch/arm/include/asm::ALT_SMP #endif #ifdef CONFIG_ARM_PATCH_PHYS_VIRT bl __fixup_pv_table @ 物理地址和虛擬地址間的偏移修正等 @ arch/arm/include/asm::pv_stub #endif bl __create_page_tables | +-->/* r8 = phys_offset, r9 = cpuid, r10 = procinfo | * | * Returns: | * r0, r3, r5-r7 corrupted | * r4 = physical page table address | */ | __create_page_tables: | pgtbl r4, r8 @ 將頁表起始物理地址放入 r4 中 | | | +-->.macro pgtbl, rd, phys | | add \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE | | .endm | | @ 對頁表區域進行清零 | mov r0, r4 | mov r3, #0 | add r6, r0, #PG_DIR_SIZE | 1: str r3, [r0], #4 | str r3, [r0], #4 | str r3, [r0], #4 | str r3, [r0], #4 | teq r0, r6 | bne 1b | | ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags | | @ 建立臨時的線性映射 | @ 頁表項格式:一級頁表入口值[31:20] MMUFLAGS[19:0] | adr r0, __turn_mmu_on_loc | ldmia r0, {r3, r5, r6}@ 獲得函數的物理地址 | sub r0, r0, r3 @ virt->phys offset | add r5, r5, r0 @ phys __turn_mmu_on | add r6, r6, r0 @ phys __turn_mmu_on_end | mov r5, r5, lsr #SECTION_SHIFT @ 獲得一級頁表入口值 | mov r6, r6, lsr #SECTION_SHIFT | | 1: orr r3, r7, r5, lsl #SECTION_SHIFT @ 一級段描述符 | str r3, [r4, r5, lsl #PMD_ORDER] @ 將 r3 中存放的段描述符放入對應的物理地址中 | cmp r5, r6 | addlo r5, r5, #1 @ 下一個段描述符 | blo 1b | | @ 設置映射頁表 | mov r3, pc | mov r3, r3, lsr #SECTION_SHIFT @ 獲得當前執行程序的段描述符編號 | orr r3, r7, r3, lsl #SECTION_SHIFT @ 合成段描述符 | @ kernel_start=0xc000_8000, section_shift=20, pmd_order=2 | @ 如下兩行實際上是在計算段描述符的入口地址 | @ 由於要回寫到 r0 中,所以拆分來寫的 | add r0, r4, #(KERNEL_START & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER) | str r3, [r0, #((KERNEL_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ORDER]! | ldr r6, =(KERNEL_END - 1) @ 內核(包括數據段)的最後一個字節位置 | add r0, r0, #1 << PMD_ORDER @ 下一個段描述符存放的物理地址 | add r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER) @ 內核須要的最後一個段描述符存放的物理地址 | 1: cmp r0, r6 | @ 內核對自身進行了線性映射,將自身物理內存所在段直接放入頁表中 | add r3, r3, #1 << SECTION_SHIFT @ 下一個段描述符,只須要增長段基址便可 | strls r3, [r0], #1 << PMD_ORDER @ 寫入到物理內存對應的頁表中 | bls 1b | | @ 將 atags 所在段寫到頁表中 | mov r0, r2, lsr #SECTION_SHIFT @ atags 段編號 | movs r0, r0, lsl #SECTION_SHIFT @ 若是 r0 爲零則賦值爲 r8,即沒有指定 atags 的狀況 | moveq r0, r8 | sub r3, r0, r8 @ 段內偏移量 | add r3, r3, #PAGE_OFFSET @ 轉化成虛擬地址 | add r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER) @ 獲得該段描述符存放的物理地址 | orr r6, r7, r0 @ 合成段描述 | str r6, [r3] @ 寫入物理內存中 | | mov pc, lr | ENDPROC(__create_page_tables) /* * r10 = base of xxx_proc_info structure selected by __lookup_processor_type * On return, the CPU will be ready for the MMU to be turned on, * r0 = CPU control register value. */ /* * 如下代碼流程 * 1. 設置v7核心,主要涉及SMP,準備MMU硬件配置,I/D cache,TLB,涉及協處理的配置 * --> arch/arm/mm/proc-v7.S::__v7_setup * 2. 配置MMU,設置內存訪問權限,並激活MMU * --> arch/arm/kernel/head.S::__enable_mmu * 3. 將數據段複製到內存中,清理bss段,將processor ID,machine ID,atags 指針保存到指定變量中 * --> arch/arm/kernel/head-common.S::__mmap_switched * 4. __mmap_switched 最後進入C語言函數start_kernel,至此終於走出了彙編代碼,進入C語言的天堂 * --> init/main.c::start_kernel */ @ 由於跳轉到該函數時,MMU已激活,故這裏使用的是虛擬地址,而不是物理地址 ldr r13, =__mmap_switched @ address to jump to after @ mmu has been enabled adr lr, BSYM(1f) @ return (PIC) address mov r8, r4 @ set TTBR1 to swapper_pg_dir ARM( add pc, r10, #PROCINFO_INITFUNC ) THUMB( add r12, r10, #PROCINFO_INITFUNC ) THUMB( mov pc, r12 ) 1: b __enable_mmu
::arch/arm/kernel/vmlinux.ld.S . = PAGE_OFFSET + TEXT_OFFSET ::arcm/arm/kernel/head.S /* * swapper_pg_dir is the virtual address of the initial page table. * We place the page tables 16K below KERNEL_RAM_VADDR. Therefore, we must * make sure that KERNEL_RAM_VADDR is correctly set. Currently, we expect * the least significant 16 bits to be 0x8000, but we could probably * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000. */ #define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET) #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000 #error KERNEL_RAM_VADDR must start at 0xXXXX8000 #endif #ifdef CONFIG_ARM_LPAE /* LPAE requires an additional page for the PGD */ #define PG_DIR_SIZE 0x5000 #define PMD_ORDER 3 #else #define PG_DIR_SIZE 0x4000 #define PMD_ORDER 2 #endif .globl swapper_pg_dir .equ swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE .macro pgtbl, rd, phys add \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE .endm #ifdef CONFIG_XIP_KERNEL #define KERNEL_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR) #define KERNEL_END _edata_loc #else #define KERNEL_START KERNEL_RAM_VADDR #define KERNEL_END _end #endif