python自動化開發-[第二十四天]-高性能相關與初識scrapy

  今日內容概要html

    一、高性能相關python

    二、scrapy初識react

      上節回顧:git

  

1. Http協議
    Http協議:GET / http1.1/r/n...../r/r/r/na=1
     TCP協議:sendall("GET / http1.1/r/n...../r/r/r/na=1") 
     
2. 請求體
     GET: GET / http1.1/r/n...../r/r/r/n
    POST: 
          POST / http1.1/r/n...../r/r/r/na=1&b=2
          POST / http1.1/r/n...../r/r/r/{"k1":123}
          
          PS: 依據Content-Type請求頭
         
3. requests模塊
    - method
    - url
    - params
    - data
    - json
    - headers
    - cookies
    - proxies
4. BeautifulSoup4模塊
    HTML
    XML
    
5. Web微信
    - 輪詢
    - 長輪詢
上節回顧

 

1、關於web微信幾點注意事項

  一、關於防盜鏈機制

     通常的網站都會用host,referer,cookies作防盜鏈,當遇到獲取圖片地址異常,能夠嘗試在headers裏添加host或者referer或者加cookiesgithub

  二、經過web微信能夠 針對報警生成api進行免費的報警發送,也能夠作一些智能回答 

 

2、高性能相關的知識

  在編寫爬蟲時,性能的消耗主要在IO請求中,當單進程單線程模式下請求URL時必然會引發等待,從而使得請求總體變慢。web

import requests

def fetch_async(url):
    response = requests.get(url)
    return response


url_list = ['http://www.github.com', 'http://www.bing.com']

for url in url_list:
    fetch_async(url)
串行執行
import requests
from concurrent.futures import ThreadPoolExecutor

def fetch_async(url):
    print('請求開始')
    response = requests.get(url)
    print(response.text)


url_list = ['http://www.baidu.com','http://www.bing.com']


pool = ThreadPoolExecutor(5)
for url in url_list:
    pool.submit(fetch_async,url)

pool.shutdown(wait=True)
多線程執行
import requests
from concurrent.futures import ThreadPoolExecutor

def fetch_async(url):
    print('請求開始')
    response = requests.get(url)
    return  response

def call_back(res):
    print('開始執行回調')
    print(res.result())


url_list = ['http://www.baidu.com','http://www.bing.com']


pool = ThreadPoolExecutor(5)
for url in url_list:
    v = pool.submit(fetch_async,url)
    v.add_done_callback(call_back)

pool.shutdown(wait=True)
多線程+回調執行
from concurrent.futures import ProcessPoolExecutor
import requests

def fetch_async(url):
    response = requests.get(url)
    return response


url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
    pool.submit(fetch_async, url)
pool.shutdown(wait=True)
多進程執行
from concurrent.futures import ProcessPoolExecutor
import requests


def fetch_async(url):
    response = requests.get(url)
    return response


def callback(future):
    print(future.result())


url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
    v = pool.submit(fetch_async, url)
    v.add_done_callback(callback)
pool.shutdown(wait=True)
多進程+回調函數

   經過上述代碼都可以完成對請求性能的提升,對於多線程和多進行的缺點是在IO阻塞時會形成了線程和進程的浪費,因此異步IO回事首選:shell

  異步IO解釋: 異步表明回調,非阻塞併發json

import asyncio

@asyncio.coroutine
def func1():
    print('before...func1....')
    yield from asyncio.sleep(5)
    print('end...func1...')

tasks = [func1(),func1()]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))


loop.close()


'''
before...func1....
before...func1....
end...func1...
end...func1...

'''
asyncio示例1

   **socket_server和client之間通訊存在4個阻塞的地方:windows

     一、socket_server啓動時候,連接循環是阻塞的api

     二、socket_server的通訊循環 send後recv是阻塞的

       三、client啓動的時候connect_server是阻塞的

     四、client send消息後 recv是阻塞的

 

import asyncio


@asyncio.coroutine
def fetch_async(host, url='/'):
    print(host, url)
    reader, writer = yield from asyncio.open_connection(host, 80)

    request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
    request_header_content = bytes(request_header_content, encoding='utf-8')

    writer.write(request_header_content)
    yield from writer.drain()
    text = yield from reader.read()
    print(host, url, text)
    writer.close()

tasks = [
    fetch_async('www.cnblogs.com', '/wupeiqi/'),
    fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
asyncio示例2
import aiohttp
import asyncio


@asyncio.coroutine
def fetch_async(url):
    print(url)
    response = yield from aiohttp.request('GET', url)
    # data = yield from response.read()
    # print(url, data)
    print(url, response)
    response.close()


tasks = [fetch_async('http://www.google.com/'), fetch_async('http://www.chouti.com/')]

event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()
asyncio+aiohttp
import asyncio
import requests


@asyncio.coroutine
def fetch_async(func, *args):
    loop = asyncio.get_event_loop()
    future = loop.run_in_executor(None, func, *args)
    response = yield from future
    print(response.url, response.content)


tasks = [
    fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
    fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
asyncio + requests
import gevent

import requests
from gevent import monkey

monkey.patch_all()


def fetch_async(method, url, req_kwargs):
    print(method, url, req_kwargs)
    response = requests.request(method=method, url=url, **req_kwargs)
    print(response.url, response.content)

# ##### 發送請求 #####
gevent.joinall([
    gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
])

# ##### 發送請求(協程池控制最大協程數量) #####
# from gevent.pool import Pool
# pool = Pool(None)
# gevent.joinall([
#     pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
# ])
gevent+requests
import grequests


request_list = [
    grequests.get('http://httpbin.org/delay/1', timeout=0.001),
    grequests.get('http://fakedomain/'),
    grequests.get('http://httpbin.org/status/500')
]


# ##### 執行並獲取響應列表 #####
# response_list = grequests.map(request_list)
# print(response_list)


# ##### 執行並獲取響應列表(處理異常) #####
# def exception_handler(request, exception):
# print(request,exception)
#     print("Request failed")

# response_list = grequests.map(request_list, exception_handler=exception_handler)
# print(response_list)
grequests
from twisted.web.client import getPage, defer
from twisted.internet import reactor

def all_done(arg):
    reactor.stop() #終止死循環

def callback(contents):
    print(contents)

deferred_list = []

url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
for url in url_list:
    deferred = getPage(bytes(url, encoding='utf8'))
    deferred.addCallback(callback)
    deferred_list.append(deferred)

dlist = defer.DeferredList(deferred_list)
dlist.addBoth(all_done)

reactor.run() #至關於一個死循環一直監聽線程的執行狀態
Twisted示例
from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop


def handle_response(response):
    """
    處理返回值內容(須要維護計數器,來中止IO循環),調用 ioloop.IOLoop.current().stop()
    :param response: 
    :return: 
    """
    if response.error:
        print("Error:", response.error)
    else:
        print(response.body)


def func():
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
    ]
    for url in url_list:
        print(url)
        http_client = AsyncHTTPClient()
        http_client.fetch(HTTPRequest(url), handle_response)


ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()
Tornado
from twisted.internet import reactor
from twisted.web.client import getPage
import urllib.parse


def one_done(arg):
    print(arg)
    reactor.stop()

post_data = urllib.parse.urlencode({'check_data': 'adf'})
post_data = bytes(post_data, encoding='utf8')
headers = {b'Content-Type': b'application/x-www-form-urlencoded'}
response = getPage(bytes('http://dig.chouti.com/login', encoding='utf8'),
                   method=bytes('POST', encoding='utf8'),
                   postdata=post_data,
                   cookies={},
                   headers=headers)
response.addBoth(one_done)

reactor.run()
Twisted更多

  以上均是Python內置以及第三方模塊提供異步IO請求模塊,使用簡便大大提升效率,而對於異步IO請求的本質則是【非阻塞Socket】+【IO多路複用】:

import select
import socket
import time


class AsyncTimeoutException(TimeoutError):
    """
    請求超時異常類
    """

    def __init__(self, msg):
        self.msg = msg
        super(AsyncTimeoutException, self).__init__(msg)


class HttpContext(object):
    """封裝請求和相應的基本數據"""

    def __init__(self, sock, host, port, method, url, data, callback, timeout=5):
        """
        sock: 請求的客戶端socket對象
        host: 請求的主機名
        port: 請求的端口
        port: 請求的端口
        method: 請求方式
        url: 請求的URL
        data: 請求時請求體中的數據
        callback: 請求完成後的回調函數
        timeout: 請求的超時時間
        """
        self.sock = sock
        self.callback = callback
        self.host = host
        self.port = port
        self.method = method
        self.url = url
        self.data = data

        self.timeout = timeout

        self.__start_time = time.time()
        self.__buffer = []

    def is_timeout(self):
        """當前請求是否已經超時"""
        current_time = time.time()
        if (self.__start_time + self.timeout) < current_time:
            return True

    def fileno(self):
        """請求sockect對象的文件描述符,用於select監聽"""
        return self.sock.fileno()

    def write(self, data):
        """在buffer中寫入響應內容"""
        self.__buffer.append(data)

    def finish(self, exc=None):
        """在buffer中寫入響應內容完成,執行請求的回調函數"""
        if not exc:
            response = b''.join(self.__buffer)
            self.callback(self, response, exc)
        else:
            self.callback(self, None, exc)

    def send_request_data(self):
        content = """%s %s HTTP/1.0\r\nHost: %s\r\n\r\n%s""" % (
            self.method.upper(), self.url, self.host, self.data,)

        return content.encode(encoding='utf8')


class AsyncRequest(object):
    def __init__(self):
        self.fds = []
        self.connections = []

    def add_request(self, host, port, method, url, data, callback, timeout):
        """建立一個要請求"""
        client = socket.socket()
        client.setblocking(False)
        try:
            client.connect((host, port))
        except BlockingIOError as e:
            pass
            # print('已經向遠程發送鏈接的請求')
        req = HttpContext(client, host, port, method, url, data, callback, timeout)
        self.connections.append(req)
        self.fds.append(req)

    def check_conn_timeout(self):
        """檢查全部的請求,是否有已經鏈接超時,若是有則終止"""
        timeout_list = []
        for context in self.connections:
            if context.is_timeout():
                timeout_list.append(context)
        for context in timeout_list:
            context.finish(AsyncTimeoutException('請求超時'))
            self.fds.remove(context)
            self.connections.remove(context)

    def running(self):
        """事件循環,用於檢測請求的socket是否已經就緒,從而執行相關操做"""
        while True:
            r, w, e = select.select(self.fds, self.connections, self.fds, 0.05)

            if not self.fds:
                return

            for context in r:
                sock = context.sock
                while True:
                    try:
                        data = sock.recv(8096)
                        if not data:
                            self.fds.remove(context)
                            context.finish()
                            break
                        else:
                            context.write(data)
                    except BlockingIOError as e:
                        break
                    except TimeoutError as e:
                        self.fds.remove(context)
                        self.connections.remove(context)
                        context.finish(e)
                        break

            for context in w:
                # 已經鏈接成功遠程服務器,開始向遠程發送請求數據
                if context in self.fds:
                    data = context.send_request_data()
                    context.sock.sendall(data)
                    self.connections.remove(context)

            self.check_conn_timeout()


if __name__ == '__main__':
    def callback_func(context, response, ex):
        """
        :param context: HttpContext對象,內部封裝了請求相關信息
        :param response: 請求響應內容
        :param ex: 是否出現異常(若是有異常則值爲異常對象;不然值爲None)
        :return:
        """
        print(context, response, ex)

    obj = AsyncRequest()
    url_list = [
        {'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
        {'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
        {'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
    ]
    for item in url_list:
        print(item)
        obj.add_request(**item)

    obj.running()
異步io模塊

  IO多路複用:select,用於檢測socket對象是否發生變化(是否鏈接成功,是否有數據到來)

  封裝模塊:

import socket
import select

class Request(object):
	def __init__(self,sock,func,url):
		self.sock = sock
		self.func = func
		self.url = url

	def fileno(self):
		return self.sock.fileno() #獲取socket對象文件描述符

def async_request(url_list):

	input_list = []
	conn_list = []

	for url in url_list:
		client = socket.socket()
		client.setblocking(False)
		# 建立鏈接,不阻塞
		try:
			client.connect((url[0],80,)) # 100個向百度發送的請求
		except BlockingIOError as e:
			pass

		obj = Request(client,url[1],url[0])

		input_list.append(obj)
		conn_list.append(obj)

	while True:
		# 監聽socket是否已經發生變化 [request_obj,request_obj....request_obj]
		# 若是有請求鏈接成功:wlist = [request_obj,request_obj]
		# 若是有響應的數據:  rlist = [request_obj,request_obj....client100]
		rlist,wlist,elist = select.select(input_list,conn_list,[],0.05)
		for request_obj in wlist:
			# print('鏈接成功')
			# # # # 發送Http請求
			# print('發送請求')
			request_obj.sock.sendall("GET / HTTP/1.0\r\nhost:{0}\r\n\r\n".format(request_obj.url).encode('utf-8'))
			conn_list.remove(request_obj)

		for request_obj in rlist:
			data = request_obj.sock.recv(8096)
			request_obj.func(data)
			request_obj.sock.close()
			input_list.remove(request_obj)

		if not input_list:
			break

  調用:

def callback1(data):
    print('百度回來了',data)

def callback2(data):
    print('必應回來了',data)

url_list = [
    ['www.baidu.com',callback1],
    ['www.bing.com',callback2]
]
s2.async_request(url_list)

  經典回答錄:   

使用一個線程完成併發操做,如何併發?
當第一個任務到來時,先發送鏈接請求,此時會發生IO等待,可是我不等待,我繼續發送第二個任務的鏈接請求....

IO多路複用監聽socket變化
先鏈接成功:
	發送請求信息: GET / http/1.0\r\nhost....
	遇到IO等待,不等待,繼續檢測是否有人鏈接成功:
	發送請求信息: GET / http/1.0\r\nhost....
	遇到IO等待,不等待,繼續檢測是否有人鏈接成功:
	發送請求信息: GET / http/1.0\r\nhost....
	
有結果返回:
	讀取返回內容,執行回調函數
	讀取返回內容,執行回調函數
	讀取返回內容,執行回調函數
	讀取返回內容,執行回調函數
	讀取返回內容,執行回調函數
	讀取返回內容,執行回調函數
	讀取返回內容,執行回調函數

問題:什麼是協程?
	  單純的執行一端代碼後,調到另一端代碼執行,再繼續跳...
	  
異步IO:
	 - 【基於協程】能夠用 協程+非阻塞socket+select實現,gevent
	 - 【基於事件循環】徹底通用socket+select實現,Twsited

1. 如何提升爬蟲併發?
	利用異步IO模塊,如:asyncio,twisted,gevent 
	本質:
		- 【基於協程】能夠用 協程+非阻塞socket+select實現,gevent
		- 【基於事件循環】徹底通用socket+select實現,Twsited,tornado
		
2. 異步非阻塞
	  異步:回調   select 
	非阻塞:不等待 setblocking(False)
		
3. 什麼是協程?
	攜程是人工去定義如何切換,遇到io阻塞就切換
	pip3 install gevent 

	from greenlet import greenlet

	def test1():
		print(12)
		gr2.switch()
		print(34)
		gr2.switch()
	 
	 
	def test2():
		print(56)
		gr1.switch()
		print(78)
	 
	gr1 = greenlet(test1)
	gr2 = greenlet(test2)
	gr1.switch()	

 

 

3、Scrapy使用

  Scrapy是一個爲了爬取網站數據,提取結構性數據而編寫的應用框架。 其能夠應用在數據挖掘,信息處理或存儲歷史數據等一系列的程序中。
其最初是爲了頁面抓取 (更確切來講, 網絡抓取 )所設計的, 也能夠應用在獲取API所返回的數據(例如 Amazon Associates Web Services ) 或者通用的網絡爬蟲。Scrapy用途普遍,能夠用於數據挖掘、監測和自動化測試。

  Scrapy 使用了 Twisted異步網絡庫來處理網絡通信。總體架構大體以下:

  

   執行流程:

      啓動scrapy經過scrapy_engine將任務放入scheduler裏(隊列),執行requests進行下載頁面,將返回值傳給spiders(這個能夠有多個),spider處理能夠經過items和pipeline進行數據持久化,也能夠進行遞歸回調 再次將新任務投放到scheduler裏

   

Scrapy主要包括瞭如下組件:

  • 引擎(Scrapy)
    用來處理整個系統的數據流處理, 觸發事務(框架核心)
  • 調度器(Scheduler)
    用來接受引擎發過來的請求, 壓入隊列中, 並在引擎再次請求的時候返回. 能夠想像成一個URL(抓取網頁的網址或者說是連接)的優先隊列, 由它來決定下一個要抓取的網址是什麼, 同時去除重複的網址
  • 下載器(Downloader)
    用於下載網頁內容, 並將網頁內容返回給蜘蛛(Scrapy下載器是創建在twisted這個高效的異步模型上的)
  • 爬蟲(Spiders)
    爬蟲是主要幹活的, 用於從特定的網頁中提取本身須要的信息, 即所謂的實體(Item)。用戶也能夠從中提取出連接,讓Scrapy繼續抓取下一個頁面
  • 項目管道(Pipeline)
    負責處理爬蟲從網頁中抽取的實體,主要的功能是持久化實體、驗證明體的有效性、清除不須要的信息。當頁面被爬蟲解析後,將被髮送到項目管道,並通過幾個特定的次序處理數據。
  • 下載器中間件(Downloader Middlewares)
    位於Scrapy引擎和下載器之間的框架,主要是處理Scrapy引擎與下載器之間的請求及響應。
  • 爬蟲中間件(Spider Middlewares)
    介於Scrapy引擎和爬蟲之間的框架,主要工做是處理蜘蛛的響應輸入和請求輸出。
  • 調度中間件(Scheduler Middewares)
    介於Scrapy引擎和調度之間的中間件,從Scrapy引擎發送到調度的請求和響應。

Scrapy運行流程大概以下:

    1. 引擎從調度器中取出一個連接(URL)用於接下來的抓取
    2. 引擎把URL封裝成一個請求(Request)傳給下載器
    3. 下載器把資源下載下來,並封裝成應答包(Response)
    4. 爬蟲解析Response
    5. 解析出實體(Item),則交給實體管道進行進一步的處理
    6. 解析出的是連接(URL),則把URL交給調度器等待抓取

  1、安裝:

    

Linux
      pip3 install scrapy
 
 
Windows
      a. pip3 install wheel
      b. 下載twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
      c. 進入下載目錄,執行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl
      d. pip3 install scrapy
      e. 下載並安裝pywin32:https://sourceforge.net/projects/pywin32/files/
    f. pip3 install pypiwin32 #若是找不到python_dir就用pip3安裝

 2、基本命令:  

1. scrapy startproject 項目名稱
   - 在當前目錄中建立中建立一個項目文件(相似於Django)
 
2. scrapy genspider [-t template] <name> <domain>
   - 建立爬蟲應用
   如:
      scrapy gensipider -t basic oldboy oldboy.com
      scrapy gensipider -t xmlfeed autohome autohome.com.cn
   PS:
      查看全部命令:scrapy gensipider -l
      查看模板命令:scrapy gensipider -d 模板名稱
 
3. scrapy list
   - 展現爬蟲應用列表
 
4. scrapy crawl 爬蟲應用名稱
   - 運行單獨爬蟲應用

5.不輸出調試日誌

   scrapy crawl quotes  --nolog

6.終端調試
    scrapy shell quotes.toscrape.com


7.生成一個json文件

    scrapy crawl quotes -o quotes.json

8.利用download下載源代碼 並經過瀏覽器顯示
    scrapy view http://www.chuchujie.com

9.格式化輸出
    #最後的parse是方法

    scrapy parse http://quotes.toscrape.com -c parse

10.run方法執行文件
    scrapy runspider spiders/quotes.py

 3、項目結構以及爬蟲應用簡介

 

project_name/
   scrapy.cfg
   project_name/
       __init__.py
       items.py
       pipelines.py
       settings.py
       spiders/
           __init__.py
           爬蟲1.py
           爬蟲2.py
           爬蟲3.py

   

  文件說明:

    • scrapy.cfg  項目的主配置信息。(真正爬蟲相關的配置信息在settings.py文件中)
    • items.py    設置數據存儲模板,用於結構化數據,如:Django的Model
    • pipelines    數據處理行爲,如:通常結構化的數據持久化
    • settings.py 配置文件,如:遞歸的層數、併發數,延遲下載等
    • spiders      爬蟲目錄,如:建立文件,編寫爬蟲規則

  注意:通常建立爬蟲文件時,以網站域名命名

  windows若是出現編碼問題:    

import sys,os
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')

  例子:

  爬取抽屜新聞內容:

# -*- coding: utf-8 -*-
import scrapy
import io,os,sys

sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')
from scrapy.selector import HtmlXPathSelector
from ..items import Sp1Item
from scrapy.http import Request

class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    # start_urls = ['http://dig.chouti.com/',]

    def start_requests(self):
        yield Request(url="http://dig.chouti.com/",headers={},callback=self.parse)

    def parse(self, response):
        # print(response.body)
        # print(response.text)
        hxs = HtmlXPathSelector(response)
        # result = hxs.select('//div[@id="yellow-msg-box-intohot"]')
        item_list = hxs.select('//div[@id="content-list"]/div[@class="item"]')
        for item in item_list:
            # item.select('./div[@class="news-content"]/div[@class="part2"]/text()').extract()
            # item.select('./div[@class="news-content"]/div[@class="part2"]/text()').extract_first()
            title = item.select('./div[@class="news-content"]/div[@class="part2"]/@share-title').extract_first()
            url = item.select('./div[@class="news-content"]/div[@class="part2"]/@share-pic').extract_first()
            # v = item.select('./div[@class="news-content"]/div[@class="part2"]/@share-title').extract_first()
            obj = Sp1Item(title=title,url=url)
            yield obj

        # 找到全部頁碼標籤
        # hxs.select('//div[@id="dig_lcpage"]//a/@href').extract()
        page_url_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href,"/all/hot/recent/\d+")]/@href').extract()
        for url in page_url_list:
            url = "http://dig.chouti.com" + url
            obj = Request(url=url,callback=self.parse,headers={},cookies={})
            yield obj
chouti.py

 

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy


class Sp1Item(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    url = scrapy.Field()
items.py
# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html


class Sp1Pipeline(object):
    def __init__(self,file_path):
        self.file_path = file_path

        self.file_obj = None

    @classmethod
    def from_crawler(cls, crawler):
        """
        初始化時候,用於建立pipeline對象
        :param crawler:
        :return:
        """
        val = crawler.settings.get('XXXXXXX')
        return cls(val)

    def process_item(self, item, spider):
        if spider.name == 'chouti':
            self.file_obj.write(item['url'])
            # print('pipeline-->',item)
        return item

    def open_spider(self,spider):
        """
        爬蟲開始執行時,只執行一次
        :param spider:
        :return:
        """
        self.file_obj = open(self.file_path,mode='a+')

    def close_spider(self,spider):
        """
        爬蟲關閉時,只執行一次
        :param spider:
        :return:
        """
        self.file_obj.close()
pipelines.py

 

    

 4、選擇器  

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from scrapy.selector import Selector, HtmlXPathSelector
from scrapy.http import HtmlResponse
html = """<!DOCTYPE html>
<html>
    <head lang="en">
        <meta charset="UTF-8">
        <title></title>
    </head>
    <body>
        <ul>
            <li class="item-"><a id='i1' href="link.html">first item</a></li>
            <li class="item-0"><a id='i2' href="llink.html">first item</a></li>
            <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li>
        </ul>
        <div><a href="llink2.html">second item</a></div>
    </body>
</html>
"""
response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')
# hxs = HtmlXPathSelector(response)
# print(hxs)
# hxs = Selector(response=response).xpath('//a')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[2]') 獲取第二個標籤
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id]') 含id的a標籤
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id="i1"]') id=i1的a標籤
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]') href=link.html id=i1的a標籤
# print(hxs)
# hxs = Selector(response=response).xpath('//a[contains(@href, "link")]') href包含link的a標籤
# print(hxs)
# hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]') href屬性以link開頭的a標籤
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]') 正則匹配id爲i數字
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract() 取a標籤的文本
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract() 取a標籤的屬性值
# print(hxs) 
# hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract() 
# print(hxs)
# hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()
# print(hxs)
 
# ul_list = Selector(response=response).xpath('//body/ul/li')
# for item in ul_list:
#     v = item.xpath('./a/span')
#     # 或
#     # v = item.xpath('a/span')
#     # 或
#     # v = item.xpath('*/a/span')
#     print(v)

   注意:settings.py中設置DEPTH_LIMIT = 1來指定「遞歸」的層數。

相關文章
相關標籤/搜索