PyTorch練手項目二:MNIST手寫數字識別

本文目的:展現如何利用PyTorch進行手寫數字識別。html

1 導入相關庫,定義一些參數

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

#定義一些參數
BATCH_SIZE = 64
EPOCHS = 10
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2 準備數據

使用Pytorch自帶數據集。python

#圖像預處理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
    ])

#訓練集
train_set = datasets.MNIST('data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_set, 
                          batch_size=BATCH_SIZE,
                          shuffle=True)

#測試集
test_set = datasets.MNIST('data', train=False, transform=transform, download=True)
test_loader = DataLoader(test_set,
                        batch_size=BATCH_SIZE,
                        shuffle=True)

3 準備模型

#搭建模型
class ConvNet(nn.Module):
    #圖像輸入是(batch,1,28,28)
    def __init__(self):
        super().__init__() 
        self.conv1 = nn.Conv2d(1, 10, (3,3)) #輸入通道數爲1,輸出通道數爲10,卷積核(3,3)
        self.conv2 = nn.Conv2d(10, 32, (3,3))
        self.fc1 = nn.Linear(12*12*32, 100)
        self.fc2 = nn.Linear(100, 10)
    
    def forward(self, x):
        x = self.conv1(x) #(batch,10,26,26)
        x = F.relu(x)
        
        x = self.conv2(x) #(batch,32,24,24)
        x = F.relu(x)
        x = F.max_pool2d(x, (2,2))  #(batch,32,12,12)
        
        x = x.view(x.size(0), -1) #flatten (batch,12*12*32)
        x = self.fc1(x) #(batch,100)
        x = F.relu(x)
        x = self.fc2(x) #(batch,10)
        
        out = F.log_softmax(x, dim=1) #softmax激活並取對數,數值上更穩定
        return out

4 訓練

#定義模型和優化器
model = ConvNet().to(DEVICE) #模型移至GPU
optimizer = torch.optim.Adam(model.parameters()) 


#定義訓練函數
def train(model, device, train_loader, optimizer, epoch): #跑一個epoch
    model.train()  #開啓訓練模式,即啓用BatchNormalization和Dropout等
    for batch_idx, (data, target) in enumerate(train_loader): #每次產生一個batch
        data, target = data.to(device), target.to(device) #產生的數據移至GPU
        output = model(data) 
        loss = F.nll_loss(output, target) #CrossEntropyLoss = log_softmax + NLLLoss
        optimizer.zero_grad() #全部梯度清零
        loss.backward() #反向傳播求全部參數梯度
        optimizer.step() #沿負梯度方向走一步
        if(batch_idx+1) % 234 == 0: 
            print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx+1) * len(data), len(train_loader.dataset),
                100. * (batch_idx+1) / len(train_loader), loss.item()))
            
            
#定義測試函數
def test(model, device, test_loader):
    model.eval()  #測試模式,不啓用BatchNormalization和Dropout
    test_loss = 0
    correct = 0
    with torch.no_grad(): #避免梯度跟蹤
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item() #將一批損失相加
            pred = output.max(1, keepdim=True)[1] #找到機率最大的下標
            #上句效果等同於 pred = torch.argmax(output, dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)  
    #len(train_loader)爲batch數,len(train_loader.dataset)爲樣本總數
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


#開始訓練
for epoch in range(1, EPOCHS + 1):
    train(model, DEVICE, train_loader, optimizer, epoch)
    test(model, DEVICE, test_loader)

注意,torch.max()有兩種用法:git

最終結果以下:github

5 小結

  • 任務流程:準備數據,準備模型,訓練
  • 如何使用PyTorch自帶數據集進行訓練
  • 自定義模型須要實現forward函數
  • model.train()和model.eval()做用
  • 最後一層x的交叉熵兩種方式等價:CrossEntropyLoss = log_softmax + nll_loss
  • torch.max()有兩種用法,返回值不同

Reference函數

相關文章
相關標籤/搜索