最近工做的項目使用了TensorFlow中的目標檢測技術,經過訓練本身的樣本集獲得模型來識別遊戲中的物體,在這裏總結下。html
本文介紹在Windows系統下,使用TensorFlow的object detection API來訓練本身的數據集,所用的模型爲ssd_mobilenet,固然也可使用其餘模型,包括ssd_inception、faster_rcnn、rfcnn_resnet等,其中,ssd模型在各類模型中性能最好,因此便採用它來進行訓練。python
1. 在GitHub上下載所需的models文件,地址:https://github.com/tensorflow/modelsios
2. 安裝pillow、Jupyter、matplotlib、lxml,打開anaconda prompt輸入如下命令,並安裝成功git
pip install pillow
pip install jupyter
pip install matplotlib
pip install lxml
3. 編譯protobuf,object detection API是使用protobuf來訓練模型和配置參數的,因此得先編譯protobuf,下載地址:https://github.com/google/protobuf/releases,具體配置過程可參考:https://blog.csdn.net/dy_guox/article/details/79081499 。github
1. 下載labelImg,並標註本身收集的圖片樣本,標註的標籤自動保存爲xml格式,瀏覽器
<annotation> <folder>images1</folder> <filename>0.png</filename> <path>C:\Users\White\Desktop\images1\0.png</path> <source> <database>Unknown</database> </source> <size> <width>1080</width> <height>1920</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>box</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>345</xmin> <ymin>673</ymin> <xmax>475</xmax> <ymax>825</ymax> </bndbox> </object> <object> <name>box</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>609</xmin> <ymin>1095</ymin> <xmax>759</xmax> <ymax>1253</ymax> </bndbox> </object> </annotation>
2. 在工程文件夾下新建如下目錄,並將全部的樣本圖片放入images文件夾,將標註保存的xml文件保存到merged_xml文件夾,網絡
1. 新建train_test_split.py把xml數據集分爲了train 、test、 validation三部分,並存儲在annotations文件夾中,train爲訓練集佔76.5%,test爲測試集10%,validation爲驗證集13.5%,train_test_split.py代碼以下:oracle
import os import random import time import shutil xmlfilepath=r'merged_xml' saveBasePath=r"./annotations" trainval_percent=0.9 train_percent=0.85 total_xml = os.listdir(xmlfilepath) num=len(total_xml) list=range(num) tv=int(num*trainval_percent) tr=int(tv*train_percent) trainval= random.sample(list,tv) train=random.sample(trainval,tr) print("train and val size",tv) print("train size",tr) # print(total_xml[1]) start = time.time() # print(trainval) # print(train) test_num=0 val_num=0 train_num=0 # for directory in ['train','test',"val"]: # xml_path = os.path.join(os.getcwd(), 'annotations/{}'.format(directory)) # if(not os.path.exists(xml_path)): # os.mkdir(xml_path) # # shutil.copyfile(filePath, newfile) # print(xml_path) for i in list: name=total_xml[i] # print(i) if i in trainval: #train and val set # ftrainval.write(name) if i in train: # ftrain.write(name) # print("train") # print(name) # print("train: "+name+" "+str(train_num)) directory="train" train_num+=1 xml_path = os.path.join(os.getcwd(), 'annotations/{}'.format(directory)) if(not os.path.exists(xml_path)): os.mkdir(xml_path) filePath=os.path.join(xmlfilepath,name) newfile=os.path.join(saveBasePath,os.path.join(directory,name)) shutil.copyfile(filePath, newfile) else: # fval.write(name) # print("val") # print("val: "+name+" "+str(val_num)) directory="validation" xml_path = os.path.join(os.getcwd(), 'annotations/{}'.format(directory)) if(not os.path.exists(xml_path)): os.mkdir(xml_path) val_num+=1 filePath=os.path.join(xmlfilepath,name) newfile=os.path.join(saveBasePath,os.path.join(directory,name)) shutil.copyfile(filePath, newfile) # print(name) else: #test set # ftest.write(name) # print("test") # print("test: "+name+" "+str(test_num)) directory="test" xml_path = os.path.join(os.getcwd(), 'annotations/{}'.format(directory)) if(not os.path.exists(xml_path)): os.mkdir(xml_path) test_num+=1 filePath=os.path.join(xmlfilepath,name) newfile=os.path.join(saveBasePath,os.path.join(directory,name)) shutil.copyfile(filePath, newfile) # print(name) # End time end = time.time() seconds=end-start print("train total : "+str(train_num)) print("validation total : "+str(val_num)) print("test total : "+str(test_num)) total_num=train_num+val_num+test_num print("total number : "+str(total_num)) print( "Time taken : {0} seconds".format(seconds))
2. 把xml轉換成csv文件,新建xml_to_csv.py,,運行代碼前,須要建一個data目錄,用來放生成的csv文件,結果和代碼以下:app
import os import glob import pandas as pd import xml.etree.ElementTree as ET def xml_to_csv(path): xml_list = [] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() # print(root) print(root.find('filename').text) for member in root.findall('object'): value = (root.find('filename').text, int(root.find('size')[0].text), #width int(root.find('size')[1].text), #height member[0].text, int(member[4][0].text), int(float(member[4][1].text)), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def main(): for directory in ['train','test','validation']: xml_path = os.path.join(os.getcwd(), 'annotations/{}'.format(directory)) # image_path = os.path.join(os.getcwd(), 'merged_xml') xml_df = xml_to_csv(xml_path) # xml_df.to_csv('whsyxt.csv', index=None) xml_df.to_csv('data/whsyxt_{}_labels.csv'.format(directory), index=None) print('Successfully converted xml to csv.') main()
運行結果以下:dom
在data文件夾下生成的csv文件:
3. 生成tfrecords文件,python文件名爲generate_tfrecord.py,代碼以下:
1 from __future__ import division 2 from __future__ import print_function 3 from __future__ import absolute_import 4 5 import os 6 import io 7 import pandas as pd 8 import tensorflow as tf 9 10 from PIL import Image 11 from object_detection.utils import dataset_util 12 from collections import namedtuple, OrderedDict 13 14 flags = tf.app.flags 15 flags.DEFINE_string('csv_input', '', 'Path to the CSV input') 16 flags.DEFINE_string('output_path', '', 'Path to output TFRecord') 17 FLAGS = flags.FLAGS 18 # TO-DO replace this with label map 19 def class_text_to_int(row_label,filename): 20 if row_label == 'person': 21 return 1 22 elif row_label == 'investigator': 23 return 2 24 elif row_label == 'collector': 25 return 3 26 elif row_label == 'wolf': 27 return 4 28 elif row_label == 'skull': 29 return 5 30 elif row_label == 'inferno': 31 return 6 32 elif row_label == 'stone_blame': 33 return 7 34 elif row_label == 'green_jelly': 35 return 8 36 elif row_label == 'blue_jelly': 37 return 9 38 elif row_label == 'box': 39 return 10 40 elif row_label == 'golden_box': 41 return 11 42 elif row_label == 'silver_box': 43 return 12 44 elif row_label == 'jar': 45 return 13 46 elif row_label == 'purple_jar': 47 return 14 48 elif row_label == 'purple_weapon': 49 return 15 50 elif row_label == 'blue_weapon': 51 return 16 52 elif row_label == 'blue_shoe': 53 return 17 54 elif row_label == 'blue_barde': 55 return 18 56 elif row_label == 'blue_ring': 57 return 19 58 elif row_label == 'badge': 59 return 20 60 elif row_label == 'dragon_stone': 61 return 21 62 elif row_label == 'lawn': 63 return 22 64 elif row_label == 'mine': 65 return 23 66 elif row_label == 'portal': 67 return 24 68 elif row_label == 'tower': 69 return 25 70 elif row_label == 'hero_stone': 71 return 26 72 elif row_label == 'oracle_stone': 73 return 27 74 elif row_label == 'arena': 75 return 28 76 elif row_label == 'gold_ore': 77 return 29 78 elif row_label == 'relic': 79 return 30 80 elif row_label == 'ancient': 81 return 31 82 elif row_label == 'house': 83 return 32 84 else: 85 print("------------------nonetype:", filename) 86 None 87 88 def split(df, group): 89 data = namedtuple('data', ['filename', 'object']) 90 gb = df.groupby(group) 91 return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] 92 93 94 def create_tf_example(group, path): 95 with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: 96 encoded_jpg = fid.read() 97 encoded_jpg_io = io.BytesIO(encoded_jpg) 98 image = Image.open(encoded_jpg_io) 99 width, height = image.size 100 101 filename = group.filename.encode('utf8') 102 image_format = b'png' 103 xmins = [] 104 xmaxs = [] 105 ymins = [] 106 ymaxs = [] 107 classes_text = [] 108 classes = [] 109 110 for index, row in group.object.iterrows(): 111 xmins.append(row['xmin'] / width) 112 xmaxs.append(row['xmax'] / width) 113 ymins.append(row['ymin'] / height) 114 ymaxs.append(row['ymax'] / height) 115 classes_text.append(row['class'].encode('utf8')) 116 classes.append(class_text_to_int(row['class'], group.filename)) 117 118 tf_example = tf.train.Example(features=tf.train.Features(feature={ 119 'image/height': dataset_util.int64_feature(height), 120 'image/width': dataset_util.int64_feature(width), 121 'image/filename': dataset_util.bytes_feature(filename), 122 'image/source_id': dataset_util.bytes_feature(filename), 123 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 124 'image/format': dataset_util.bytes_feature(image_format), 125 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 126 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 127 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 128 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 129 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 130 'image/object/class/label': dataset_util.int64_list_feature(classes), 131 })) 132 return tf_example 133 134 135 def main(_): 136 writer = tf.python_io.TFRecordWriter(FLAGS.output_path) 137 path = os.path.join(os.getcwd(), 'images') 138 examples = pd.read_csv(FLAGS.csv_input) 139 grouped = split(examples, 'filename') 140 num=0 141 for group in grouped: 142 num+=1 143 tf_example = create_tf_example(group, path) 144 writer.write(tf_example.SerializeToString()) 145 if(num%100==0): #每完成100個轉換,打印一次 146 print(num) 147 148 writer.close() 149 output_path = os.path.join(os.getcwd(), FLAGS.output_path) 150 print('Successfully created the TFRecords: {}'.format(output_path)) 151 152 153 if __name__ == '__main__': 154 tf.app.run()
其中,20~83行應改爲在樣本集中標註的類別,我這裏總共有32個類別,字符串row_label應與labelImg中標註的名稱相同。
現將訓練集轉換爲tfrecord格式,輸入以下命令:
python generate_tfrecord.py --csv_input=data/whsyxt_train_labels.csv --output_path=data/whsyxt_train.tfrecord
相似的,咱們能夠輸入以下命令,將驗證集和測試集也轉換爲tfrecord格式,
python generate_tfrecord.py --csv_input=data/whsyxt_validation_labels.csv --output_path=data/whsyxt_validation.tfrecord
python generate_tfrecord.py --csv_input=data/whsyxt_test_labels.csv --output_path=data/whsyxt_test.tfrecord
都執行成功後,得到以下文件,
1. 在工程文件夾data目錄下建立標籤分類的配置文件(label_map.pbtxt),須要檢測幾種目標,將建立幾個id,代碼以下:
item { id: 1 # id從1開始編號 name: 'person' } item { id: 2 name: 'investigator' } item { id: 3 name: 'collector' } item { id: 4 name: 'wolf' } item { id: 5 name: 'skull' } item { id: 6 name: 'inferno' } item { id: 7 name: 'stone_blame' } item { id: 8 name: 'green_jelly' } item { id: 9 name: 'blue_jelly' } item { id: 10 name: 'box' } item { id: 11 name: 'golden_box' } item { id: 12 name: 'silver_box' } item { id: 13 name: 'jar' } item { id: 14 name: 'purple_jar' } item { id: 15 name: 'purple_weapon' } item { id: 16 name: 'blue_weapon' } item { id: 17 name: 'blue_shoe' } item { id: 18 name: 'blue_barde' } item { id: 19 name: 'blue_ring' } item { id: 20 name: 'badge' } item { id: 21 name: 'dragon_stone' } item { id: 22 name: 'lawn' } item { id: 23 name: 'mine' } item { id: 24 name: 'portal' } item { id: 25 name: 'tower' } item { id: 26 name: 'hero_stone' } item { id: 27 name: 'oracle_stone' } item { id: 28 name: 'arena' } item { id: 29 name: 'gold_ore' } item { id: 30 name: 'relic' } item { id: 31 name: 'ancient' } item { id: 32 name: 'house' }
2. 配置管道配置文件,找到 models\research\object_detection\samples\configs\ssd_inception_v2_pets.config文件,複製到data文件夾下,修改以後代碼以下:
1 # SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset. 2 # Users should configure the fine_tune_checkpoint field in the train config as 3 # well as the label_map_path and input_path fields in the train_input_reader and 4 # eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that 5 # should be configured. 6 7 model { 8 ssd { 9 num_classes: 32 10 box_coder { 11 faster_rcnn_box_coder { 12 y_scale: 10.0 13 x_scale: 10.0 14 height_scale: 5.0 15 width_scale: 5.0 16 } 17 } 18 matcher { 19 argmax_matcher { 20 matched_threshold: 0.45 21 unmatched_threshold: 0.35 22 ignore_thresholds: false 23 negatives_lower_than_unmatched: true 24 force_match_for_each_row: true 25 } 26 } 27 similarity_calculator { 28 iou_similarity { 29 } 30 } 31 anchor_generator { 32 ssd_anchor_generator { 33 num_layers: 6 34 min_scale: 0.2 35 max_scale: 0.95 36 aspect_ratios: 1.0 37 aspect_ratios: 2.0 38 aspect_ratios: 0.5 39 aspect_ratios: 3.0 40 aspect_ratios: 0.3333 41 } 42 } 43 image_resizer { 44 fixed_shape_resizer { 45 height: 300 46 width: 300 47 } 48 } 49 box_predictor { 50 convolutional_box_predictor { 51 min_depth: 0 52 max_depth: 0 53 num_layers_before_predictor: 0 54 use_dropout: false 55 dropout_keep_probability: 0.8 56 kernel_size: 1 57 box_code_size: 4 58 apply_sigmoid_to_scores: false 59 conv_hyperparams { 60 activation: RELU_6, 61 regularizer { 62 l2_regularizer { 63 weight: 0.00004 64 } 65 } 66 initializer { 67 truncated_normal_initializer { 68 stddev: 0.03 69 mean: 0.0 70 } 71 } 72 batch_norm { 73 train: true, 74 scale: true, 75 center: true, 76 decay: 0.9997, 77 epsilon: 0.001, 78 } 79 } 80 } 81 } 82 feature_extractor { 83 type: 'ssd_mobilenet_v1' 84 min_depth: 16 85 depth_multiplier: 1.0 86 conv_hyperparams { 87 activation: RELU_6, 88 regularizer { 89 l2_regularizer { 90 weight: 0.00004 91 } 92 } 93 initializer { 94 truncated_normal_initializer { 95 stddev: 0.03 96 mean: 0.0 97 } 98 } 99 batch_norm { 100 train: true, 101 scale: true, 102 center: true, 103 decay: 0.9997, 104 epsilon: 0.001, 105 } 106 } 107 } 108 loss { 109 classification_loss { 110 weighted_sigmoid { 111 } 112 } 113 localization_loss { 114 weighted_smooth_l1 { 115 } 116 } 117 hard_example_miner { 118 num_hard_examples: 3000 119 iou_threshold: 0.99 120 loss_type: CLASSIFICATION 121 max_negatives_per_positive: 3 122 min_negatives_per_image: 0 123 } 124 classification_weight: 1.0 125 localization_weight: 1.0 126 } 127 normalize_loss_by_num_matches: true 128 post_processing { 129 batch_non_max_suppression { 130 score_threshold: 1e-8 131 iou_threshold: 0.6 132 max_detections_per_class: 100 133 max_total_detections: 100 134 } 135 score_converter: SIGMOID 136 } 137 } 138 } 139 140 train_config: { 141 batch_size: 24 142 optimizer { 143 rms_prop_optimizer: { 144 learning_rate: { 145 exponential_decay_learning_rate { 146 initial_learning_rate: 0.004 147 decay_steps: 1000 148 decay_factor: 0.95 149 } 150 } 151 momentum_optimizer_value: 0.9 152 decay: 0.9 153 epsilon: 1.0 154 } 155 } 156 #fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" 157 from_detection_checkpoint: false 158 # Note: The below line limits the training process to 200K steps, which we 159 # empirically found to be sufficient enough to train the pets dataset. This 160 # effectively bypasses the learning rate schedule (the learning rate will 161 # never decay). Remove the below line to train indefinitely. 162 num_steps: 40000 163 data_augmentation_options { 164 random_horizontal_flip { 165 } 166 } 167 data_augmentation_options { 168 ssd_random_crop { 169 } 170 } 171 } 172 173 train_input_reader: { 174 tf_record_input_reader { 175 input_path: "E:/Project/object-detection-Game-yellow/data/whsyxt_train.tfrecord" 176 } 177 label_map_path: "E:/Project/object-detection-Game-yellow/data/label_map.pbtxt" 178 } 179 180 eval_config: { 181 num_examples: 2000 182 # Note: The below line limits the evaluation process to 10 evaluations. 183 # Remove the below line to evaluate indefinitely. 184 max_evals: 10 185 } 186 187 eval_input_reader: { 188 tf_record_input_reader { 189 input_path: "E:/Project/object-detection-Game-yellow/data/whsyxt_validation.tfrecord" 190 } 191 label_map_path: "E:/Project/object-detection-Game-yellow/data/label_map.pbtxt" 192 shuffle: false 193 num_readers: 1 194 }
這裏須要修改的幾處有:第9行,改成本身標註的總類別數;第175行,改成訓練集tfrecord文件的路徑;第177行和191行,改成本身label_map的路徑;第189行,改成驗證集tfrecord文件的路徑。
咱們能夠在這個管道文件中設置網絡的各類學習參數,如:第141行設置批次大小,第145~148行設置學習率和退化率,第162行設置訓練的總步數等等。
3. 開始訓練,將object_detection\train.py文件複製到工程目錄下進行訓練便可,命令以下:
python train.py --logtostderr --pipeline_config_path=E:/Project/object-detection-Game-yellow/data/ssd_mobilenet_v1_pets.config --train_dir=E:/Project/object-detection-Game-yellow/data
無錯誤則開始訓練,等待訓練結束,以下:
1.在輸入訓練的命令後,data文件夾下會生成以下文件,該文件存放訓練過程當中的中間數據,並能夠用圖形化的方式展示出來。
2. 新打開一個命令提示符窗口,首先激活TensorFlow,而後輸入以下命令:
tensorboard --logdir==training:your_log_dir --host=127.0.0.1
其中,your_log_dir爲工程目錄中存放訓練結果的文件夾目錄,把目錄地址拷貝出來將其替代。
3.打開瀏覽器,在地址欄輸入:localhost:6006,便可顯示tensorboard:
1.訓練過程當中將在training目錄下生成一堆model.ckpt-*的文件,以下:
選擇相應步數的模型,使用export_inference_graph.py(其在object detection目錄下)導出pb文件,命令以下:
python export_inference_graph.py --pipeline_config_path=E:\Project\object-detection-Game-yellow\data\ssd_mobilenet_v1_pets.config --trained_checkpoint_prefix ./data/model.ckpt-30000 --output_directory ./data/exported_model_directory
運行命令後,會在工程的data目錄下生成名爲exported_model_directory文件夾,以下:
文件夾內容以下:
其中,frozen_inference_graph.pb就是咱們之後將要使用的模型結果。
1. 新建test_images文件夾和get_testImages.py文件,並加入如下代碼,以下:
1 from PIL import Image 2 import os.path 3 import glob 4 5 annotations_test_dir = "E:\\Project\\object-detection-Game-yellow\\annotations\\test\\" 6 Images_dir = "E:\\Project\\object-detection-Game-yellow\\Images" 7 test_images_dir = "E:\\Project\\object-detection-Game-yellow\\test_images" 8 i = 0 9 for xmlfile in os.listdir(annotations_test_dir): 10 (filepath, tempfilename) = os.path.split(xmlfile) 11 (shotname, extension) = os.path.splitext(tempfilename) 12 xmlname = shotname 13 for pngfile in os.listdir(Images_dir): 14 (filepath, tempfilename) = os.path.split(pngfile) 15 (pngname, extension) = os.path.splitext(tempfilename) 16 if pngname == xmlname: 17 img = Image.open(Images_dir+"\\" + pngname + ".png") 18 img.save(os.path.join(test_images_dir, os.path.basename(pngfile))) 19 print(pngname) 20 i += 1 21 print(i)
第五、六、7行,分別是annotations\test文件夾路徑、Images文件夾路徑和test_images文件夾路徑,運行python文件,獲取測試圖片並存儲到test_images文件夾目錄下。
1. 在工程目錄下新建results文件夾和get_allTestResults.py文件並加入以下代碼,咱們將使用前面訓練出的模型批量測試test_images文件夾中的圖片並保存到results文件夾中,
1 # -*- coding: utf-8 -*- 2 import os 3 from PIL import Image 4 import time 5 import tensorflow as tf 6 from PIL import Image 7 import numpy as np 8 import os 9 import six.moves.urllib as urllib 10 import sys 11 import tarfile 12 import zipfile 13 import time 14 15 from collections import defaultdict 16 from io import StringIO 17 from matplotlib import pyplot as plt 18 # plt.switch_backend('Agg') 19 from utils import label_map_util 20 21 from utils import visualization_utils as vis_util 22 23 PATH_TO_TEST_IMAGES = "E:\\Project\\object-detection-Game-yellow\\test_images\\" 24 MODEL_NAME = 'E:/Project/object-detection-Game-yellow/data' 25 PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' 26 PATH_TO_LABELS = MODEL_NAME+'/label_map.pbtxt' 27 NUM_CLASSES = 32 28 PATH_TO_RESULTS = "E:\\Project\\object-detection-Game-yellow\\results2\\" 29 30 31 def load_image_into_numpy_array(image): 32 (im_width, im_height) = image.size 33 return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8) 34 35 36 def save_object_detection_result(): 37 IMAGE_SIZE = (12, 8) 38 # Load a (frozen) Tensorflow model into memory. 39 detection_graph = tf.Graph() 40 with detection_graph.as_default(): 41 od_graph_def = tf.GraphDef() 42 # loading ckpt file to graph 43 with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: 44 serialized_graph = fid.read() 45 od_graph_def.ParseFromString(serialized_graph) 46 tf.import_graph_def(od_graph_def, name='') 47 # Loading label map 48 label_map = label_map_util.load_labelmap(PATH_TO_LABELS) 49 categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, 50 use_display_name=True) 51 category_index = label_map_util.create_category_index(categories) 52 # Helper code 53 with detection_graph.as_default(): 54 with tf.Session(graph=detection_graph) as sess: 55 start = time.time() 56 for test_image in os.listdir(PATH_TO_TEST_IMAGES): 57 image = Image.open(PATH_TO_TEST_IMAGES + test_image) 58 # the array based representation of the image will be used later in order to prepare the 59 # result image with boxes and labels on it. 60 image_np = load_image_into_numpy_array(image) 61 # Expand dimensions since the model expects images to have shape: [1, None, None, 3] 62 image_np_expanded = np.expand_dims(image_np, axis=0) 63 image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') 64 # Each box represents a part of the image where a particular object was detected. 65 boxes = detection_graph.get_tensor_by_name('detection_boxes:0') 66 # Each score represent how level of confidence for each of the objects. 67 # Score is shown on the result image, together with the class label. 68 scores = detection_graph.get_tensor_by_name('detection_scores:0') 69 classes = detection_graph.get_tensor_by_name('detection_classes:0') 70 num_detections = detection_graph.get_tensor_by_name('num_detections:0') 71 # Actual detection. 72 (boxes, scores, classes, num_detections) = sess.run( 73 [boxes, scores, classes, num_detections], 74 feed_dict={image_tensor: image_np_expanded}) 75 # Visualization of the results of a detection. 76 vis_util.visualize_boxes_and_labels_on_image_array( 77 image_np, 78 np.squeeze(boxes), 79 np.squeeze(classes).astype(np.int32), 80 np.squeeze(scores), 81 category_index, 82 use_normalized_coordinates=True, 83 line_thickness=8) 84 85 final_score = np.squeeze(scores) 86 count = 0 87 for i in range(100): 88 if scores is None or final_score[i] > 0.5: 89 count = count + 1 90 print() 91 print("the count of objects is: ", count) 92 (im_width, im_height) = image.size 93 for i in range(count): 94 # print(boxes[0][i]) 95 y_min = boxes[0][i][0] * im_height 96 x_min = boxes[0][i][1] * im_width 97 y_max = boxes[0][i][2] * im_height 98 x_max = boxes[0][i][3] * im_width 99 x = int((x_min + x_max) / 2) 100 y = int((y_min + y_max) / 2) 101 if category_index[classes[0][i]]['name'] == "tower": 102 print("this image has a tower!") 103 y = int((y_max - y_min) / 4 * 3 + y_min) 104 print("object{0}: {1}".format(i, category_index[classes[0][i]]['name']), 105 ',Center_X:', x, ',Center_Y:', y) 106 # print(x_min,y_min,x_max,y_max) 107 plt.figure(figsize=IMAGE_SIZE) 108 plt.imshow(image_np) 109 picName = test_image.split('/')[-1] 110 # print(picName) 111 plt.savefig(PATH_TO_RESULTS + picName) 112 print(test_image + ' succeed') 113 114 end = time.time() 115 seconds = end - start 116 print("Time taken : {0} seconds".format(seconds)) 117 118 119 save_object_detection_result()
最後,咱們就可使用results中的測試結果進行準確率的計算,查看訓練效果及後期優化。