題意:給定一棵有n個點的樹,詢問樹上距離爲k的點對是否存在。c++
作法:對於一個點\(u\),樹上全部的路徑能夠分爲兩類,一類是通過點\(u\),另外一類是沒有通過點\(u\),即整條路徑位於\(u\)的某個子樹中。那麼咱們就能夠對於點\(u\)統計出通過他的路徑是否能夠構成\(k\),而後刪去點\(u\),對於每一個子樹的挑一個點做爲根\(v\),重複一樣的操做。這樣咱們就統計出了全部的路徑。
而後咱們注意到,若是這棵樹是一條鏈,最壞的狀況複雜度會降低爲\(O(n^2)\),爲了解決這個問題,咱們每次選取當前這棵樹的重心做爲根來分治,就能夠將最壞複雜度降爲\(O(nlogn)\),爲了寫起來方便個人代碼多了一個\(log\)git
Code:學習
#include <bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;++i) #define pb push_back #define Pii pair<int,int> #define x first #define y second const int N = 10005; template <class T> inline void read(T &x) { x = 0; T f = 1; char c = getchar(); while(!isdigit(c)) { if(c == '-') f = -1; c = getchar(); } while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); } x *= f; } using namespace std; int n, m, K[111], Ans[111]; struct edge{int e, w, nxt;} E[N << 1]; int h[N], cc; void add(int u, int v, int w) { E[cc].e = v; E[cc].w = w; E[cc].nxt = h[u]; h[u] = cc; ++cc; } int used[N], sz[N], mxp[N]; map<int,int> dep; set<int> S; int idx, MN; void dfs(int u, int pre, int num) { sz[u] = 1; mxp[u] = 0; for(int i = h[u]; ~i; i = E[i].nxt) if(!used[E[i].e] && E[i].e != pre){ int v = E[i].e; dfs(v, u, num); sz[u] += sz[v]; mxp[u] = max(mxp[u], sz[v]); } mxp[u] = max(mxp[u], num-sz[u]); if(mxp[u] < MN) MN = mxp[u], idx = u; } int fdrt(int u,int sum) { idx = 0, MN = __INT_MAX__; dfs(u,0,sum); return idx; } void bfs(int u, int w) { dep[u] = w; queue<int> q; q.push(u); while(!q.empty()) { int u = q.front(); q.pop(); for(int i = h[u]; ~i ; i = E[i].nxt) if(!used[E[i].e] && dep.find(E[i].e) == dep.end()) { int v = E[i].e; dep[v] = dep[u] + E[i].w; q.push(v); } } } int M[N]; void solve(int u) { used[u] = 1; S.clear(); S.insert(0); for(int i = h[u]; ~i; i = E[i].nxt) if(!used[E[i].e]) { int v = E[i].e, w = E[i].w; dep.clear(); bfs(v,w); for(auto A: dep) { for(int j = 1; j <= m; ++j) { if(S.find(K[j] - A.y) != S.end()) Ans[j] |= 1; } } for(auto A: dep) S.insert(A.y); M[v] = dep.size(); } for(int i = h[u]; ~i; i = E[i].nxt) if(!used[E[i].e]) { solve( fdrt(E[i].e, M[E[i].e]) ); } } int main() { read(n); read(m); int u, v, w; memset(h, -1, sizeof(h)); rep(i,2,n) read(u), read(v), read(w), add(u,v,w), add(v,u,w); rep(i,1,m) read(K[i]); int rt = fdrt(1,n); solve(rt); rep(i,1,m) puts(Ans[i] ? "AYE" : "NAY"); }