java線程池賞析

一、線程池的頂級接口(Executor)

線程池的頂級接口(jdk > 1.5)。僅僅定義了方法execute(Runnable)。html

該方法接收一個Runnable實例,用來執行一個任務,該任務便是一個實現Runnable接口的類。java

 

public interface Executor {

    /**
     * Executes the given command at some time in the future.  The command
     * may execute in a new thread, in a pooled thread, or in the calling
     * thread, at the discretion of the <tt>Executor</tt> implementation.
     *
     * @param command the runnable task
     * @throws RejectedExecutionException if this task cannot be
     * accepted for execution.
     * @throws NullPointerException if command is null
     */
    void execute(Runnable command);
}
View Code

java-APIapi

 二、線程池二級接口ExecutorService

interface ExecutorService extends Executor app

繼承自Executor接口,提供了更多的方法調用less

任務有兩種: Runnable 可執行的任務, 無返回結果;  Callable 可執行的任務,有返回值。 返回結果能夠被Future接受。dom

  • List<Future> invokeAll(Collect<Callable> tasks)  執行tasks,返回保持任務狀態和結果的  Future 列表。
  • List<Future> invokeAll(Collect<Callable> tasks,long timeout,TimeUnit unit)  執行tasks,當全部任務完成或超時(不管哪一個首先發生),返回保持任務狀態和結果的 Future 列表.
  • T invokeAll(Collect<Callable> tasks,long timeout,TimeUnit unit)  隨便執行task,返回其結果
  • void shutdown() 準備關閉,繼續執行已提交的任務,但不接受新任務。
  • List<Runable> shutdownNow() 暫停處理正在等待的任務,並返回等待執行的任務列表。
  • Future submit(Callable task)  執行一個任務,返回保持任務狀態和結果的 Future
  • Future submit(Runable task,T result)  執行一個任務,完成時返回result做爲 結果 Future
/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;
import java.util.List;
import java.util.Collection;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction;

/**
 * An {@link Executor} that provides methods to manage termination and
 * methods that can produce a {@link Future} for tracking progress of
 * one or more asynchronous tasks.
 *
 * <p> An <tt>ExecutorService</tt> can be shut down, which will cause
 * it to reject new tasks.  Two different methods are provided for
 * shutting down an <tt>ExecutorService</tt>. The {@link #shutdown}
 * method will allow previously submitted tasks to execute before
 * terminating, while the {@link #shutdownNow} method prevents waiting
 * tasks from starting and attempts to stop currently executing tasks.
 * Upon termination, an executor has no tasks actively executing, no
 * tasks awaiting execution, and no new tasks can be submitted.  An
 * unused <tt>ExecutorService</tt> should be shut down to allow
 * reclamation of its resources.
 *
 * <p> Method <tt>submit</tt> extends base method {@link
 * Executor#execute} by creating and returning a {@link Future} that
 * can be used to cancel execution and/or wait for completion.
 * Methods <tt>invokeAny</tt> and <tt>invokeAll</tt> perform the most
 * commonly useful forms of bulk execution, executing a collection of
 * tasks and then waiting for at least one, or all, to
 * complete. (Class {@link ExecutorCompletionService} can be used to
 * write customized variants of these methods.)
 *
 * <p>The {@link Executors} class provides factory methods for the
 * executor services provided in this package.
 *
 * <h3>Usage Examples</h3>
 *
 * Here is a sketch of a network service in which threads in a thread
 * pool service incoming requests. It uses the preconfigured {@link
 * Executors#newFixedThreadPool} factory method:
 *
 * <pre>
 * class NetworkService implements Runnable {
 *   private final ServerSocket serverSocket;
 *   private final ExecutorService pool;
 *
 *   public NetworkService(int port, int poolSize)
 *       throws IOException {
 *     serverSocket = new ServerSocket(port);
 *     pool = Executors.newFixedThreadPool(poolSize);
 *   }
 *
 *   public void run() { // run the service
 *     try {
 *       for (;;) {
 *         pool.execute(new Handler(serverSocket.accept()));
 *       }
 *     } catch (IOException ex) {
 *       pool.shutdown();
 *     }
 *   }
 * }
 *
 * class Handler implements Runnable {
 *   private final Socket socket;
 *   Handler(Socket socket) { this.socket = socket; }
 *   public void run() {
 *     // read and service request on socket
 *   }
 * }
 * </pre>
 *
 * The following method shuts down an <tt>ExecutorService</tt> in two phases,
 * first by calling <tt>shutdown</tt> to reject incoming tasks, and then
 * calling <tt>shutdownNow</tt>, if necessary, to cancel any lingering tasks:
 *
 * <pre>
 * void shutdownAndAwaitTermination(ExecutorService pool) {
 *   pool.shutdown(); // Disable new tasks from being submitted
 *   try {
 *     // Wait a while for existing tasks to terminate
 *     if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
 *       pool.shutdownNow(); // Cancel currently executing tasks
 *       // Wait a while for tasks to respond to being cancelled
 *       if (!pool.awaitTermination(60, TimeUnit.SECONDS))
 *           System.err.println("Pool did not terminate");
 *     }
 *   } catch (InterruptedException ie) {
 *     // (Re-)Cancel if current thread also interrupted
 *     pool.shutdownNow();
 *     // Preserve interrupt status
 *     Thread.currentThread().interrupt();
 *   }
 * }
 * </pre>
 *
 * <p>Memory consistency effects: Actions in a thread prior to the
 * submission of a {@code Runnable} or {@code Callable} task to an
 * {@code ExecutorService}
 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
 * any actions taken by that task, which in turn <i>happen-before</i> the
 * result is retrieved via {@code Future.get()}.
 *
 * @since 1.5
 * @author Doug Lea
 */
public interface ExecutorService extends Executor {

    /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted.
     * Invocation has no additional effect if already shut down.
     *
     * <p>This method does not wait for previously submitted tasks to
     * complete execution.  Use {@link #awaitTermination awaitTermination}
     * to do that.
     *
     * @throws SecurityException if a security manager exists and
     *         shutting down this ExecutorService may manipulate
     *         threads that the caller is not permitted to modify
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
     *         or the security manager's <tt>checkAccess</tt> method
     *         denies access.
     */
    void shutdown();

    /**
     * Attempts to stop all actively executing tasks, halts the
     * processing of waiting tasks, and returns a list of the tasks
     * that were awaiting execution.
     *
     * <p>This method does not wait for actively executing tasks to
     * terminate.  Use {@link #awaitTermination awaitTermination} to
     * do that.
     *
     * <p>There are no guarantees beyond best-effort attempts to stop
     * processing actively executing tasks.  For example, typical
     * implementations will cancel via {@link Thread#interrupt}, so any
     * task that fails to respond to interrupts may never terminate.
     *
     * @return list of tasks that never commenced execution
     * @throws SecurityException if a security manager exists and
     *         shutting down this ExecutorService may manipulate
     *         threads that the caller is not permitted to modify
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
     *         or the security manager's <tt>checkAccess</tt> method
     *         denies access.
     */
    List<Runnable> shutdownNow();

    /**
     * Returns <tt>true</tt> if this executor has been shut down.
     *
     * @return <tt>true</tt> if this executor has been shut down
     */
    boolean isShutdown();

    /**
     * Returns <tt>true</tt> if all tasks have completed following shut down.
     * Note that <tt>isTerminated</tt> is never <tt>true</tt> unless
     * either <tt>shutdown</tt> or <tt>shutdownNow</tt> was called first.
     *
     * @return <tt>true</tt> if all tasks have completed following shut down
     */
    boolean isTerminated();

    /**
     * Blocks until all tasks have completed execution after a shutdown
     * request, or the timeout occurs, or the current thread is
     * interrupted, whichever happens first.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return <tt>true</tt> if this executor terminated and
     *         <tt>false</tt> if the timeout elapsed before termination
     * @throws InterruptedException if interrupted while waiting
     */
    boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException;


    /**
     * Submits a value-returning task for execution and returns a
     * Future representing the pending results of the task. The
     * Future's <tt>get</tt> method will return the task's result upon
     * successful completion.
     *
     * <p>
     * If you would like to immediately block waiting
     * for a task, you can use constructions of the form
     * <tt>result = exec.submit(aCallable).get();</tt>
     *
     * <p> Note: The {@link Executors} class includes a set of methods
     * that can convert some other common closure-like objects,
     * for example, {@link java.security.PrivilegedAction} to
     * {@link Callable} form so they can be submitted.
     *
     * @param task the task to submit
     * @return a Future representing pending completion of the task
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     * @throws NullPointerException if the task is null
     */
    <T> Future<T> submit(Callable<T> task);

    /**
     * Submits a Runnable task for execution and returns a Future
     * representing that task. The Future's <tt>get</tt> method will
     * return the given result upon successful completion.
     *
     * @param task the task to submit
     * @param result the result to return
     * @return a Future representing pending completion of the task
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     * @throws NullPointerException if the task is null
     */
    <T> Future<T> submit(Runnable task, T result);

    /**
     * Submits a Runnable task for execution and returns a Future
     * representing that task. The Future's <tt>get</tt> method will
     * return <tt>null</tt> upon <em>successful</em> completion.
     *
     * @param task the task to submit
     * @return a Future representing pending completion of the task
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     * @throws NullPointerException if the task is null
     */
    Future<?> submit(Runnable task);

    /**
     * Executes the given tasks, returning a list of Futures holding
     * their status and results when all complete.
     * {@link Future#isDone} is <tt>true</tt> for each
     * element of the returned list.
     * Note that a <em>completed</em> task could have
     * terminated either normally or by throwing an exception.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @return A list of Futures representing the tasks, in the same
     *         sequential order as produced by the iterator for the
     *         given task list, each of which has completed.
     * @throws InterruptedException if interrupted while waiting, in
     *         which case unfinished tasks are cancelled.
     * @throws NullPointerException if tasks or any of its elements are <tt>null</tt>
     * @throws RejectedExecutionException if any task cannot be
     *         scheduled for execution
     */

    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        throws InterruptedException;

    /**
     * Executes the given tasks, returning a list of Futures holding
     * their status and results
     * when all complete or the timeout expires, whichever happens first.
     * {@link Future#isDone} is <tt>true</tt> for each
     * element of the returned list.
     * Upon return, tasks that have not completed are cancelled.
     * Note that a <em>completed</em> task could have
     * terminated either normally or by throwing an exception.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return a list of Futures representing the tasks, in the same
     *         sequential order as produced by the iterator for the
     *         given task list. If the operation did not time out,
     *         each task will have completed. If it did time out, some
     *         of these tasks will not have completed.
     * @throws InterruptedException if interrupted while waiting, in
     *         which case unfinished tasks are cancelled
     * @throws NullPointerException if tasks, any of its elements, or
     *         unit are <tt>null</tt>
     * @throws RejectedExecutionException if any task cannot be scheduled
     *         for execution
     */
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                  long timeout, TimeUnit unit)
        throws InterruptedException;

    /**
     * Executes the given tasks, returning the result
     * of one that has completed successfully (i.e., without throwing
     * an exception), if any do. Upon normal or exceptional return,
     * tasks that have not completed are cancelled.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @return the result returned by one of the tasks
     * @throws InterruptedException if interrupted while waiting
     * @throws NullPointerException if tasks or any element task
     *         subject to execution is <tt>null</tt>
     * @throws IllegalArgumentException if tasks is empty
     * @throws ExecutionException if no task successfully completes
     * @throws RejectedExecutionException if tasks cannot be scheduled
     *         for execution
     */
    <T> T invokeAny(Collection<? extends Callable<T>> tasks)
        throws InterruptedException, ExecutionException;

    /**
     * Executes the given tasks, returning the result
     * of one that has completed successfully (i.e., without throwing
     * an exception), if any do before the given timeout elapses.
     * Upon normal or exceptional return, tasks that have not
     * completed are cancelled.
     * The results of this method are undefined if the given
     * collection is modified while this operation is in progress.
     *
     * @param tasks the collection of tasks
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return the result returned by one of the tasks.
     * @throws InterruptedException if interrupted while waiting
     * @throws NullPointerException if tasks, or unit, or any element
     *         task subject to execution is <tt>null</tt>
     * @throws TimeoutException if the given timeout elapses before
     *         any task successfully completes
     * @throws ExecutionException if no task successfully completes
     * @throws RejectedExecutionException if tasks cannot be scheduled
     *         for execution
     */
    <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                    long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}
View Code

 

java-APIsocket

三、線程池計劃任務ScheduledExecutorService

ScheduledExecutorService extends ExecutorService

async

是一個抽象類,能夠 定時、 按期 執行任務ide

  • ScheduleFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit)  在delay時間後 執行callable任務
  • ScheduleFuture schedule(Runnable runnable, long delay, TimeUnit unit)  在delay時間後 執行runnable任務
  • ScheduleFuture scheduleAtFixedRate(Runnable runnable, long initTime,long period, TimeUnit unit)  在initTime時間後 執行runnable任務,而後在init+period後再次執行,在inti+period*2後再次執行。。。。。
  • ScheduleFuture scheduleWithFixedDely(Runnable runnable, long initTime,long delay, TimeUnit unit)  在initTime時間後 執行runnable任務,完畢後,在delay後再次執行

 java-API工具

四、線程池工具Executors

 這個工具類至關強大, 能夠建立FixedThreadPool、CachedThreadPool、ScheduledThreadPool、SingleThreadExceutor 、callable(Runnable轉爲callable)

默認返回:ExecutorService 或 ScheduledExecutorService,極大的省去了複雜的建立工做。單元測試場景很是實用。

使用起來方便

        ScheduledExecutorService scheduledExecutorService1 = Executors.newScheduledThreadPool(12);// 12個核心線程
        ExecutorService executorService2 = Executors.newFixedThreadPool(10);// 10個核心線程
        ExecutorService executorService1 = Executors.newSingleThreadExecutor();// 單個線程
        ExecutorService executorService = Executors.newCachedThreadPool(); // 根據任務無限增長線程,存活60s,無任務則銷燬
        Callable<Object> callable1 = Executors.callable(privilegedAction);
        Callable<Object> callable2 = Executors.callable(a);
        Object call = callable1.call();
/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;
import java.util.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.security.AccessControlContext;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;
import java.security.AccessControlException;
import sun.security.util.SecurityConstants;

/**
 * Factory and utility methods for {@link Executor}, {@link
 * ExecutorService}, {@link ScheduledExecutorService}, {@link
 * ThreadFactory}, and {@link Callable} classes defined in this
 * package. This class supports the following kinds of methods:
 *
 * <ul>
 *   <li> Methods that create and return an {@link ExecutorService}
 *        set up with commonly useful configuration settings.
 *   <li> Methods that create and return a {@link ScheduledExecutorService}
 *        set up with commonly useful configuration settings.
 *   <li> Methods that create and return a "wrapped" ExecutorService, that
 *        disables reconfiguration by making implementation-specific methods
 *        inaccessible.
 *   <li> Methods that create and return a {@link ThreadFactory}
 *        that sets newly created threads to a known state.
 *   <li> Methods that create and return a {@link Callable}
 *        out of other closure-like forms, so they can be used
 *        in execution methods requiring <tt>Callable</tt>.
 * </ul>
 *
 * @since 1.5
 * @author Doug Lea
 */
public class Executors {

    /**
     * Creates a thread pool that reuses a fixed number of threads
     * operating off a shared unbounded queue.  At any point, at most
     * <tt>nThreads</tt> threads will be active processing tasks.
     * If additional tasks are submitted when all threads are active,
     * they will wait in the queue until a thread is available.
     * If any thread terminates due to a failure during execution
     * prior to shutdown, a new one will take its place if needed to
     * execute subsequent tasks.  The threads in the pool will exist
     * until it is explicitly {@link ExecutorService#shutdown shutdown}.
     *
     * @param nThreads the number of threads in the pool
     * @return the newly created thread pool
     * @throws IllegalArgumentException if {@code nThreads <= 0}
     */
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

    /**
     * Creates a thread pool that reuses a fixed number of threads
     * operating off a shared unbounded queue, using the provided
     * ThreadFactory to create new threads when needed.  At any point,
     * at most <tt>nThreads</tt> threads will be active processing
     * tasks.  If additional tasks are submitted when all threads are
     * active, they will wait in the queue until a thread is
     * available.  If any thread terminates due to a failure during
     * execution prior to shutdown, a new one will take its place if
     * needed to execute subsequent tasks.  The threads in the pool will
     * exist until it is explicitly {@link ExecutorService#shutdown
     * shutdown}.
     *
     * @param nThreads the number of threads in the pool
     * @param threadFactory the factory to use when creating new threads
     * @return the newly created thread pool
     * @throws NullPointerException if threadFactory is null
     * @throws IllegalArgumentException if {@code nThreads <= 0}
     */
    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }

    /**
     * Creates an Executor that uses a single worker thread operating
     * off an unbounded queue. (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * <tt>newFixedThreadPool(1)</tt> the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.
     *
     * @return the newly created single-threaded Executor
     */
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

    /**
     * Creates an Executor that uses a single worker thread operating
     * off an unbounded queue, and uses the provided ThreadFactory to
     * create a new thread when needed. Unlike the otherwise
     * equivalent <tt>newFixedThreadPool(1, threadFactory)</tt> the
     * returned executor is guaranteed not to be reconfigurable to use
     * additional threads.
     *
     * @param threadFactory the factory to use when creating new
     * threads
     *
     * @return the newly created single-threaded Executor
     * @throws NullPointerException if threadFactory is null
     */
    public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>(),
                                    threadFactory));
    }

    /**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available.  These pools will typically improve the performance
     * of programs that execute many short-lived asynchronous tasks.
     * Calls to <tt>execute</tt> will reuse previously constructed
     * threads if available. If no existing thread is available, a new
     * thread will be created and added to the pool. Threads that have
     * not been used for sixty seconds are terminated and removed from
     * the cache. Thus, a pool that remains idle for long enough will
     * not consume any resources. Note that pools with similar
     * properties but different details (for example, timeout parameters)
     * may be created using {@link ThreadPoolExecutor} constructors.
     *
     * @return the newly created thread pool
     */
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

    /**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available, and uses the provided
     * ThreadFactory to create new threads when needed.
     * @param threadFactory the factory to use when creating new threads
     * @return the newly created thread pool
     * @throws NullPointerException if threadFactory is null
     */
    public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }

    /**
     * Creates a single-threaded executor that can schedule commands
     * to run after a given delay, or to execute periodically.
     * (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * <tt>newScheduledThreadPool(1)</tt> the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.
     * @return the newly created scheduled executor
     */
    public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1));
    }

    /**
     * Creates a single-threaded executor that can schedule commands
     * to run after a given delay, or to execute periodically.  (Note
     * however that if this single thread terminates due to a failure
     * during execution prior to shutdown, a new one will take its
     * place if needed to execute subsequent tasks.)  Tasks are
     * guaranteed to execute sequentially, and no more than one task
     * will be active at any given time. Unlike the otherwise
     * equivalent <tt>newScheduledThreadPool(1, threadFactory)</tt>
     * the returned executor is guaranteed not to be reconfigurable to
     * use additional threads.
     * @param threadFactory the factory to use when creating new
     * threads
     * @return a newly created scheduled executor
     * @throws NullPointerException if threadFactory is null
     */
    public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1, threadFactory));
    }

    /**
     * Creates a thread pool that can schedule commands to run after a
     * given delay, or to execute periodically.
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle.
     * @return a newly created scheduled thread pool
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     */
    public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }

    /**
     * Creates a thread pool that can schedule commands to run after a
     * given delay, or to execute periodically.
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle.
     * @param threadFactory the factory to use when the executor
     * creates a new thread.
     * @return a newly created scheduled thread pool
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     * @throws NullPointerException if threadFactory is null
     */
    public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }


    /**
     * Returns an object that delegates all defined {@link
     * ExecutorService} methods to the given executor, but not any
     * other methods that might otherwise be accessible using
     * casts. This provides a way to safely "freeze" configuration and
     * disallow tuning of a given concrete implementation.
     * @param executor the underlying implementation
     * @return an <tt>ExecutorService</tt> instance
     * @throws NullPointerException if executor null
     */
    public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
        if (executor == null)
            throw new NullPointerException();
        return new DelegatedExecutorService(executor);
    }

    /**
     * Returns an object that delegates all defined {@link
     * ScheduledExecutorService} methods to the given executor, but
     * not any other methods that might otherwise be accessible using
     * casts. This provides a way to safely "freeze" configuration and
     * disallow tuning of a given concrete implementation.
     * @param executor the underlying implementation
     * @return a <tt>ScheduledExecutorService</tt> instance
     * @throws NullPointerException if executor null
     */
    public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {
        if (executor == null)
            throw new NullPointerException();
        return new DelegatedScheduledExecutorService(executor);
    }

    /**
     * Returns a default thread factory used to create new threads.
     * This factory creates all new threads used by an Executor in the
     * same {@link ThreadGroup}. If there is a {@link
     * java.lang.SecurityManager}, it uses the group of {@link
     * System#getSecurityManager}, else the group of the thread
     * invoking this <tt>defaultThreadFactory</tt> method. Each new
     * thread is created as a non-daemon thread with priority set to
     * the smaller of <tt>Thread.NORM_PRIORITY</tt> and the maximum
     * priority permitted in the thread group.  New threads have names
     * accessible via {@link Thread#getName} of
     * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence
     * number of this factory, and <em>M</em> is the sequence number
     * of the thread created by this factory.
     * @return a thread factory
     */
    public static ThreadFactory defaultThreadFactory() {
        return new DefaultThreadFactory();
    }

    /**
     * Returns a thread factory used to create new threads that
     * have the same permissions as the current thread.
     * This factory creates threads with the same settings as {@link
     * Executors#defaultThreadFactory}, additionally setting the
     * AccessControlContext and contextClassLoader of new threads to
     * be the same as the thread invoking this
     * <tt>privilegedThreadFactory</tt> method.  A new
     * <tt>privilegedThreadFactory</tt> can be created within an
     * {@link AccessController#doPrivileged} action setting the
     * current thread's access control context to create threads with
     * the selected permission settings holding within that action.
     *
     * <p> Note that while tasks running within such threads will have
     * the same access control and class loader settings as the
     * current thread, they need not have the same {@link
     * java.lang.ThreadLocal} or {@link
     * java.lang.InheritableThreadLocal} values. If necessary,
     * particular values of thread locals can be set or reset before
     * any task runs in {@link ThreadPoolExecutor} subclasses using
     * {@link ThreadPoolExecutor#beforeExecute}. Also, if it is
     * necessary to initialize worker threads to have the same
     * InheritableThreadLocal settings as some other designated
     * thread, you can create a custom ThreadFactory in which that
     * thread waits for and services requests to create others that
     * will inherit its values.
     *
     * @return a thread factory
     * @throws AccessControlException if the current access control
     * context does not have permission to both get and set context
     * class loader.
     */
    public static ThreadFactory privilegedThreadFactory() {
        return new PrivilegedThreadFactory();
    }

    /**
     * Returns a {@link Callable} object that, when
     * called, runs the given task and returns the given result.  This
     * can be useful when applying methods requiring a
     * <tt>Callable</tt> to an otherwise resultless action.
     * @param task the task to run
     * @param result the result to return
     * @return a callable object
     * @throws NullPointerException if task null
     */
    public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }

    /**
     * Returns a {@link Callable} object that, when
     * called, runs the given task and returns <tt>null</tt>.
     * @param task the task to run
     * @return a callable object
     * @throws NullPointerException if task null
     */
    public static Callable<Object> callable(Runnable task) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<Object>(task, null);
    }

    /**
     * Returns a {@link Callable} object that, when
     * called, runs the given privileged action and returns its result.
     * @param action the privileged action to run
     * @return a callable object
     * @throws NullPointerException if action null
     */
    public static Callable<Object> callable(final PrivilegedAction<?> action) {
        if (action == null)
            throw new NullPointerException();
        return new Callable<Object>() {
            public Object call() { return action.run(); }};
    }

    /**
     * Returns a {@link Callable} object that, when
     * called, runs the given privileged exception action and returns
     * its result.
     * @param action the privileged exception action to run
     * @return a callable object
     * @throws NullPointerException if action null
     */
    public static Callable<Object> callable(final PrivilegedExceptionAction<?> action) {
        if (action == null)
            throw new NullPointerException();
        return new Callable<Object>() {
            public Object call() throws Exception { return action.run(); }};
    }

    /**
     * Returns a {@link Callable} object that will, when
     * called, execute the given <tt>callable</tt> under the current
     * access control context. This method should normally be
     * invoked within an {@link AccessController#doPrivileged} action
     * to create callables that will, if possible, execute under the
     * selected permission settings holding within that action; or if
     * not possible, throw an associated {@link
     * AccessControlException}.
     * @param callable the underlying task
     * @return a callable object
     * @throws NullPointerException if callable null
     *
     */
    public static <T> Callable<T> privilegedCallable(Callable<T> callable) {
        if (callable == null)
            throw new NullPointerException();
        return new PrivilegedCallable<T>(callable);
    }

    /**
     * Returns a {@link Callable} object that will, when
     * called, execute the given <tt>callable</tt> under the current
     * access control context, with the current context class loader
     * as the context class loader. This method should normally be
     * invoked within an {@link AccessController#doPrivileged} action
     * to create callables that will, if possible, execute under the
     * selected permission settings holding within that action; or if
     * not possible, throw an associated {@link
     * AccessControlException}.
     * @param callable the underlying task
     *
     * @return a callable object
     * @throws NullPointerException if callable null
     * @throws AccessControlException if the current access control
     * context does not have permission to both set and get context
     * class loader.
     */
    public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable) {
        if (callable == null)
            throw new NullPointerException();
        return new PrivilegedCallableUsingCurrentClassLoader<T>(callable);
    }

    // Non-public classes supporting the public methods

    /**
     * A callable that runs given task and returns given result
     */
    static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

    /**
     * A callable that runs under established access control settings
     */
    static final class PrivilegedCallable<T> implements Callable<T> {
        private final Callable<T> task;
        private final AccessControlContext acc;

        PrivilegedCallable(Callable<T> task) {
            this.task = task;
            this.acc = AccessController.getContext();
        }

        public T call() throws Exception {
            try {
                return AccessController.doPrivileged(
                    new PrivilegedExceptionAction<T>() {
                        public T run() throws Exception {
                            return task.call();
                        }
                    }, acc);
            } catch (PrivilegedActionException e) {
                throw e.getException();
            }
        }
    }

    /**
     * A callable that runs under established access control settings and
     * current ClassLoader
     */
    static final class PrivilegedCallableUsingCurrentClassLoader<T> implements Callable<T> {
        private final Callable<T> task;
        private final AccessControlContext acc;
        private final ClassLoader ccl;

        PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) {
            SecurityManager sm = System.getSecurityManager();
            if (sm != null) {
                // Calls to getContextClassLoader from this class
                // never trigger a security check, but we check
                // whether our callers have this permission anyways.
                sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);

                // Whether setContextClassLoader turns out to be necessary
                // or not, we fail fast if permission is not available.
                sm.checkPermission(new RuntimePermission("setContextClassLoader"));
            }
            this.task = task;
            this.acc = AccessController.getContext();
            this.ccl = Thread.currentThread().getContextClassLoader();
        }

        public T call() throws Exception {
            try {
                return AccessController.doPrivileged(
                    new PrivilegedExceptionAction<T>() {
                        public T run() throws Exception {
                            Thread t = Thread.currentThread();
                            ClassLoader cl = t.getContextClassLoader();
                            if (ccl == cl) {
                                return task.call();
                            } else {
                                t.setContextClassLoader(ccl);
                                try {
                                    return task.call();
                                } finally {
                                    t.setContextClassLoader(cl);
                                }
                            }
                        }
                    }, acc);
            } catch (PrivilegedActionException e) {
                throw e.getException();
            }
        }
    }

    /**
     * The default thread factory
     */
    static class DefaultThreadFactory implements ThreadFactory {
        private static final AtomicInteger poolNumber = new AtomicInteger(1);
        private final ThreadGroup group;
        private final AtomicInteger threadNumber = new AtomicInteger(1);
        private final String namePrefix;

        DefaultThreadFactory() {
            SecurityManager s = System.getSecurityManager();
            group = (s != null) ? s.getThreadGroup() :
                                  Thread.currentThread().getThreadGroup();
            namePrefix = "pool-" +
                          poolNumber.getAndIncrement() +
                         "-thread-";
        }

        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            if (t.isDaemon())
                t.setDaemon(false);
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY);
            return t;
        }
    }

    /**
     * Thread factory capturing access control context and class loader
     */
    static class PrivilegedThreadFactory extends DefaultThreadFactory {
        private final AccessControlContext acc;
        private final ClassLoader ccl;

        PrivilegedThreadFactory() {
            super();
            SecurityManager sm = System.getSecurityManager();
            if (sm != null) {
                // Calls to getContextClassLoader from this class
                // never trigger a security check, but we check
                // whether our callers have this permission anyways.
                sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);

                // Fail fast
                sm.checkPermission(new RuntimePermission("setContextClassLoader"));
            }
            this.acc = AccessController.getContext();
            this.ccl = Thread.currentThread().getContextClassLoader();
        }

        public Thread newThread(final Runnable r) {
            return super.newThread(new Runnable() {
                public void run() {
                    AccessController.doPrivileged(new PrivilegedAction<Void>() {
                        public Void run() {
                            Thread.currentThread().setContextClassLoader(ccl);
                            r.run();
                            return null;
                        }
                    }, acc);
                }
            });
        }
    }

    /**
     * A wrapper class that exposes only the ExecutorService methods
     * of an ExecutorService implementation.
     */
    static class DelegatedExecutorService extends AbstractExecutorService {
        private final ExecutorService e;
        DelegatedExecutorService(ExecutorService executor) { e = executor; }
        public void execute(Runnable command) { e.execute(command); }
        public void shutdown() { e.shutdown(); }
        public List<Runnable> shutdownNow() { return e.shutdownNow(); }
        public boolean isShutdown() { return e.isShutdown(); }
        public boolean isTerminated() { return e.isTerminated(); }
        public boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException {
            return e.awaitTermination(timeout, unit);
        }
        public Future<?> submit(Runnable task) {
            return e.submit(task);
        }
        public <T> Future<T> submit(Callable<T> task) {
            return e.submit(task);
        }
        public <T> Future<T> submit(Runnable task, T result) {
            return e.submit(task, result);
        }
        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
            throws InterruptedException {
            return e.invokeAll(tasks);
        }
        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                             long timeout, TimeUnit unit)
            throws InterruptedException {
            return e.invokeAll(tasks, timeout, unit);
        }
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
            throws InterruptedException, ExecutionException {
            return e.invokeAny(tasks);
        }
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                               long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException {
            return e.invokeAny(tasks, timeout, unit);
        }
    }

    static class FinalizableDelegatedExecutorService
        extends DelegatedExecutorService {
        FinalizableDelegatedExecutorService(ExecutorService executor) {
            super(executor);
        }
        protected void finalize() {
            super.shutdown();
        }
    }

    /**
     * A wrapper class that exposes only the ScheduledExecutorService
     * methods of a ScheduledExecutorService implementation.
     */
    static class DelegatedScheduledExecutorService
            extends DelegatedExecutorService
            implements ScheduledExecutorService {
        private final ScheduledExecutorService e;
        DelegatedScheduledExecutorService(ScheduledExecutorService executor) {
            super(executor);
            e = executor;
        }
        public ScheduledFuture<?> schedule(Runnable command, long delay,  TimeUnit unit) {
            return e.schedule(command, delay, unit);
        }
        public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
            return e.schedule(callable, delay, unit);
        }
        public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay,  long period, TimeUnit unit) {
            return e.scheduleAtFixedRate(command, initialDelay, period, unit);
        }
        public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay,  long delay, TimeUnit unit) {
            return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);
        }
    }


    /** Cannot instantiate. */
    private Executors() {}
}
View Code

 

java-API

 五、線程池根基ThreadPoolExecutor

ThreadPoolExecutor extends AbstractExecutorService

AbstractExecutorService implements ExecutorService

工具類能夠建立n種線程,那麼這些線程實質仍是來自於ThreadPoolExecutor類。

 

public ThreadPoolExecutor(int corePoolSize,//核心線程池大小
                              int maximumPoolSize,//最大線程池大小
                              long keepAliveTime,//線程池中超過corePoolSize數目的空閒線程最大存活時間
                              TimeUnit unit,//keepAliveTime的時間單位
                              BlockingQueue<Runnable> workQueue,//任務堆積時,進入任務隊列
                              ThreadFactory threadFactory,//線程工廠,可null
                              RejectedExecutionHandler handler) {//當提交任務數超過maxmumPoolSize+workQueue之和時,任務會交給RejectedExecutionHandler來處理,可null
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

 

 其中比較容易讓人誤解的是:corePoolSize,maximumPoolSize,workQueue之間關係。 

1.當線程池小於corePoolSize時,新提交任務將建立一個新線程執行任務,即便此時線程池中存在空閒線程。 

2.當線程池達到corePoolSize時,新提交任務將被放入workQueue中,等待線程池中任務調度執行 

3.當workQueue已滿,且maximumPoolSize>corePoolSize時,新提交任務會建立新線程執行任務

4.當線程池中超過corePoolSize線程,空閒時間達到keepAliveTime時,關閉空閒線程 

5.當設置allowCoreThreadTimeOut(true)時,線程池中corePoolSize線程空閒時間達到keepAliveTime也將關閉 

6.當提交任務數超過maximumPoolSize+workQueue.size時,新提交任務由RejectedExecutionHandler處理 

 RejectedExecutionHandler(飽和策略)

當隊列和線程池都滿了,說明線程池處於飽和狀態,那麼必須採起一種策略處理提交的新任務。這個策略默認狀況下是AbortPolicy

如: ThreadPoolExecutor.AbortPolicy

  • AbortPolicy:直接拋出異常

  • CallerRunsPolicy:直接使用 調用線程(主線程) 來運行任務,若是主線程關閉,則丟棄該任務。
  • DiscardOldestPolicy:丟棄隊列裏最舊的任務。
  • DiscardPolicy:再也不接受新任務(不處理丟棄掉)。
  • 自定義:固然也能夠根據應用場景須要來實現RejectedExecutionHandler接口自定義策略。如記錄日誌或持久化不能處理的任務

 

 java-API

相關文章
相關標籤/搜索