數字手寫識別——Java實現KNN算法

引言

手寫識別也是當前機器學習的一大熱點,數字手寫識別是手寫識別中的基礎,咱們用到的是knn算法,今天給你們講一下個人實現方法;git


環境

IDE:Eclipse
語言:Javagithub


項目:數字手寫識別

思路

數據採集:咱們知道,一張圖片能夠被看做一個個點組成的矩陣,對於手寫數字,咱們只要建立一個全0數組看成背景,手寫完畢把數字所佔區域置爲1,就能夠保存看成一個樣本了,以下圖所示。
這裏寫圖片描述
算法:KNN算法,其距離度量咱們採用歐拉距離。
歐拉距離計算方法:咱們將數組看做40*40向量,採用距離公式計算。web

這裏寫圖片描述

實現

1、面板

請原諒做者對於美笨拙的感知,我所繪製的界面不可以再簡單了。如圖:算法

面板按鈕介紹數組

  • Identify:識別手寫的數字;
  • Save this example: 保存這個樣例到數據集;
  • 數字下拉框:至關於保存數據集的標籤,例如,要保存手寫「2」,先下拉選好2再保存便可

這裏寫圖片描述

2、存儲

在數據讀取存儲上走了不少彎路,以後要好好總結下數據流的幾個傳輸方式。
咱們將每張圖片轉化爲一個二維數組後,存放進一個txt文件中。對於每一個單獨的文件,咱們要產生一個獨一無二的文件名,因此文件取名方式採起「數字+隨機id .txt」的格式命名,隨機id咱們經過構造UID對象,獲取其hashcode值做爲id。app

//獲取下拉框選中的數字
            String selectedNumber=cbItem.getSelectedItem().toString();
            UID id=new UID();
            //文件的前綴路徑
            String rootPath="C:\\Users\\DearYou\\eclipse-workspace\\GUI\\src\\Demo\\handwritingIdentify\\TrainingData\\";
            //生成文件名
            String fileName=selectedNumber+"-"+id.hashCode();
            //生成絕對路徑下的一個文件
            String absoluteFile=rootPath+fileName+".txt";
            File file=new File(absoluteFile);
            try {
                //建立文件
                if(!file.exists())
                    file.createNewFile();
                //將數組寫入文件
                FileWriter out = new FileWriter(file);
                for(int i=0;i<40;i++) {
                    for(int j=0;j<40;j++) {
                        out.write(pixel[i][j]+"");
                    }
                }
                out.flush();
                out.close();
            }catch(Exception e1) {
                e1.printStackTrace();
            }

3、Knn算法實現

Common thinking :KNN目的是找到k個離測試樣本最近的訓練樣本,看了下同窗的方法,大多都使用了排序,但本身想一想排序實在是多餘,一個排序就將複雜度升到了O(nlgn),數據容量一大,性能就會降低。
My thinking:我想咱們只要找到k個距離最近的樣本,和順序並無關係。筆者細想了一下,我麼只要構建一個大小爲k的數組或者隊列,對於前k個元素,咱們直接放進數組,後面的n-k個元素,咱們找到存放在數組中的k個元素中最大值,將兩者比較看是否替代。這樣咱們只需遍歷一遍,複雜度降爲O(n),也是一種小優化。eclipse

僞代碼:
    KnnNode[] dist=new KnnNode[k];
    for(int i=0->k){
        KnnNode temp=new KnnNode(distance);
        dist.append(temp)
    }
    for(the rest of test set){
        if(temp.distance < the maximum element in dist)
            dist[index of max]=temp;
    }

4、預測

方法以下展現:
這裏寫圖片描述
咱們也能夠在識別以後保存該樣本,這樣不能不斷擴大數據集,讓精度更高。機器學習


總結

雖然能在O(n)複雜度裏實現Knn算法,可是個人knn延展性太差,我應該能夠把這個knn的參數換成算好的距離,而不是傳入的數組,這樣就能將這個KNN封裝好方便之後再用。
源代碼參考地址:https://github.com/Gray-way/HandwritingRecognitionsvg

相關文章
相關標籤/搜索