JavaShuo
欄目
標籤
Re-id Using CNN Features Learned from Combination of Attributes(ICPR2016)
時間 2021-07-11
標籤
行人再識別
简体版
原文
原文鏈接
Abstract 本文介紹了微調的CNN特徵以便於行人再識別。最近已經證明在大的註釋數據集(例如ImageNet)上從預先訓練的卷積神經網絡(CNN)的頂層提取的特徵是用於各種識別任務的強有力的現成描述符。然而,預訓練任務(即,ImageNet分類)與目標任務(即,人物圖像匹配)之間大的差異限制了CNN特徵用於行人重識別的性能。在本文中,我們通過對行人屬性數據集進行微調來改進CNN特
>>阅读原文<<
相關文章
1.
Automatic fall detection of human in video using combination of features譯文
2.
2 ways of using Naive Bayes classification for numeric attributes
3.
人羣場景的屬性--Deeply Learned Attributes for Crowded Scene Understandin
4.
Relational retrieval using a combination of path-constrained random walks
5.
2017 sensors之ReID:Person Recognition System Based on a Combination of Body Images from Visible Light
6.
[MICCAI 2019] Comparative Evaluation of Hand-Engineered and Deep-Learned Features for Neonatal Hip B
7.
Deeply Learned Attributes for Crowded Scene Understanding(WWW dataset)
8.
Rapid Object Detection using a Boosted Cascade of Simple Features
9.
RPM-Net: Robust Point Matching using Learned Features 2020 論文筆記
10.
Affordance Detection of Tool Parts from Geometric Features
更多相關文章...
•
ASP Attributes 屬性
-
ASP 教程
•
ASP Attributes 屬性
-
ASP 教程
•
JDK13 GA發佈:5大特性解讀
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
attributes
learned
features
combination
ReID
using
cnn
ssd+reid
39.combination
for...of
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Automatic fall detection of human in video using combination of features譯文
2.
2 ways of using Naive Bayes classification for numeric attributes
3.
人羣場景的屬性--Deeply Learned Attributes for Crowded Scene Understandin
4.
Relational retrieval using a combination of path-constrained random walks
5.
2017 sensors之ReID:Person Recognition System Based on a Combination of Body Images from Visible Light
6.
[MICCAI 2019] Comparative Evaluation of Hand-Engineered and Deep-Learned Features for Neonatal Hip B
7.
Deeply Learned Attributes for Crowded Scene Understanding(WWW dataset)
8.
Rapid Object Detection using a Boosted Cascade of Simple Features
9.
RPM-Net: Robust Point Matching using Learned Features 2020 論文筆記
10.
Affordance Detection of Tool Parts from Geometric Features
>>更多相關文章<<